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ABSTRACT

Land models are increasingly used and preferred in terrestrial hydrological prediction applications. One

reason for selecting land models over simpler models is that their physically based backbone enables wider

application under different conditions. This study evaluates the temporal variability in streamflow simulations

in land models. Specifically, we evaluate how the subsurface structure and model parameters control the

partitioning of water into different flow paths and the temporal variability in streamflow. Moreover, we use a

suite ofmodel diagnostics, typically not used in the landmodeling community to clarifymodel weaknesses and

identify a path towardmodel improvement. Our analyses show that the typical landmodel structure, and their

functions for moisture movement between soil layers (an approximation of Richards equation), has a dis-

tinctive signature where flashy runoff is superimposed on slow recessions. This hampers the application of

land models in simulating flashier basins and headwater catchments where floods are generated. We dem-

onstrate the added value of the preferential flow in the model simulation by including macropores in both a

toy model and the Variable Infiltration Capacity model. We argue that including preferential flow in land

models is essential to enable their use for multiple applications across a myriad of temporal and spatial scales.

1. Introduction

Land models have the potential to be used for a bewil-

dering large number of applications. While land models

(historically called land surface models) were initially

developed to provide the lower boundary condition for

atmospheric models (Manabe 1969), land models have

increased in complexity and offer new opportunities to

simulate the terrestrial hydrologic cycle (Clark et al. 2015;

Archfield et al. 2015). Land models are attractive for hy-

drologic applications because they provide a more com-

prehensive representation of the dominant biogeophysical

and biogeochemical processes controlling the water bal-

ance (Fan et al. 2019), as modern land models simulate

coupled energy, water, carbon, and nitrogen cycle.

Despite the potential benefit of land models for vari-

ous scientific and operational purposes, limited work has

been done to evaluate the representation of hydrologic
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processes in land models. Key challenges include the

following:

1) Land models typically have a fairly simplistic sub-

surface structure, that is, the vertical discretization of

the soil column into layers to enable application of

Fourier’s law and Darcy’s law to describe the diffu-

sion of heat and water through the soil column. Such

discretization does not adequately represent the

heterogeneity observed in nature, such as the het-

erogeneity in vertical/sloped flow paths.

2) The land modeling community has given limited

attention to parameter estimation and uncertainty

analysis. While some parameters in land models can

be related to geophysical attributes, many parame-

ters in land models are often set to spatially constant

values based on limited experimental data or are

based on order-of-magnitude considerations. In this

approach, model parameters are often treated as

physical constants, limiting the agility of process-

based models (Mendoza et al. 2015; Cuntz et al.

2016). Limited work has been done to rigorously

evaluate the hydrological meaning and impact of the

model parameters.

3) It is challenging to evaluate landmodels. The current

generation of landmodels includes a large number of

processes for which there is limited evaluation data.

Moreover, land models are typically run at spatial

and temporal scales that differ from the scale of

measurement (e.g., flux towers are not representative

of larger areas; streamflow data provides limited

insights on spatial variability within the catchment).

Land models also have intensive computational re-

quirements and data needs. On the data side, land

models require a myriad of geophysical data (digital

terrain data, soil maps, vegetation maps, etc.), which are

obtained from a mix of remote sensing and observa-

tional syntheses; the forcing data in landmodels includes

data on precipitation, temperature, humidity, wind

speed, solar and longwave radiation, and pressure, ob-

tained from a mix of numerical weather prediction

model reanalyses and station observations. Such in-

tensive data requirements impose complicated model

workflows that constrain capabilities for model analysis.

On the computational side, landmodels are typically run

over large geographical domains, at high spatial reso-

lution, and subdaily time steps in order to simulate the

diurnal variability in energy fluxes. Such intensive

computational requirements limit capabilities for model

analysis because it is not computationally feasible to

produce a large number of model simulations.

In this paper we evaluate the temporal variability in

streamflow simulations using the commonly assumed

subsurface structure of landmodels.We directly address

the challenges defined above: we evaluate how the

subsurface structure and model parameters control the

partitioning of water into different flow paths and

the temporal variability in streamflow, andwe use a suite

of model diagnostics, typically not used in the land

modeling community, to clarify model weaknesses and

identify a path toward model improvement.

The paper is organized as follows. In section 2 we

review the modeling approaches commonly used in land

models to simulate water movement in soils. In section 3

we describe our methodology, including the model de-

scriptions andmodel evaluation strategy. In section 4 we

present the result of each model and the interpretation

of model parameters from streamflow simulations and

recession analyses. The paper concludes in section 5

with discussion on the findings of this paper and possible

paths forward for future model development.

2. Review of alternative approaches to simulate
water movement in soils

The storage and transmission of water in soil can be

described in two separate domains 1) micropores, the

small pore spaces within the soil matrix, and 2) macro-

pores, where water moves through cavities/openings

developed by physical, chemical and/or biological pro-

cess in soil structure. Figure 1 illustrates both the slow

diffusion of water in micropores (e.g., the soil matrix

where the pore space is smaller than 5mm), as well as

the fast downward flow of water through macropores

(e.g., the soil cavities of around 100mm). The flow of

water through macropores is difficult to quantify be-

cause it depends on amyriad of factors such as biological

processes, tree density and type, density of earthworms,

bedrock topography, human construction of artificial

drainage, and so forth. The heterogeneity of macropore

flow and the lack of information on macropore structure

and connectivity make it difficult to simulate macropore

FIG. 1. Illustration of water movement in micropore and mac-

ropores. Based on the figure in Nimmo and Mitchell (2013) with

the permission of the publisher.
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flow directly (Beven and Germann 1982; Koide and

Wheater 1992;Wheater et al. 1993;Mirus et al. 2011;Mirus

and Nimmo 2013; Harman et al. 2009; Davies et al. 2013).

One of the major differences between bucket-style

rainfall–runoff models, commonly referred to as con-

ceptual rainfall–runoff models, and land models, is the

representation of the fast and slow flow, conceptual-

ized based on the macropore/micropore water move-

ment. In commonly used hydrological models such as

HBV, FLEX, and HYMOD, the precipitation is first

split into two pathways: 1) the water that is stored,

absorbed, and stays within the micropore matrix and 2)

the water that is transmitted through the soil matrix via

macropores. The water transmitted through macro-

pores can have multiple flow pathways, for example, a

‘‘faster’’ flow pathwaywhere flow throughmacropores is

delivered directly to the streams, and a ‘‘slower’’ flow

pathway where macropore flow feeds a baseflow reser-

voir. Some model structures also include the percola-

tion, or slow movement of water, from the micropore

matrix to the baseflow reservoir. These simpler models

are often presented as a collection of buckets, and

the physical meaning of the model structure (e.g., the

micropore matrix, macropore flow) is not explicit.

In land models the precipitation is typically parti-

tioned into two flow pathways: the surface runoff that is

routed to the river network, and the infiltration into the

soil (i.e., infiltration into the micropore matrix). Modern

land models do not typically represent macropore flow

at all (Clark et al. 2015).Most landmodels have a similar

treatment of the storage and transmission of water

through micropores (Boone and Wetzel 1996; Lee and

Abriola 1999), that is, most land models use Richards’

equation to describe the gravity and capillary fluxes in

the micropore matrix, but differ in the constitutive

functions that are used to relate matric head to volu-

metric liquid water content and hydraulic conductivity

(van Genuchten, Brooks and Corey, etc.) and the as-

pects of the numerical solution (e.g., the vertical dis-

cretization of the soil column, methods to interpolate

fluxes to layer interfaces, and the time stepping scheme).

The drainage of water from the bottom of the micro-

pore matrix is the slow component of flow, which may

be used to recharge a conceptual aquifer. Modeling

the heterogeneity of flow through micropores and

macropores is a key unmet challenge for the land

modeling community (Clark et al. 2015; Rahman and

Rosolem 2017).

More generally, model simulations of the storage

and transmission of water through micropores and

macropores can be classified into three discrete model-

ing approaches, all of which are variants of the com-

plete model in Fig. 1.

1) The approach typically used in land models where

the storage and transmission of water in the un-

saturated zone is only based on diffusion through

micropores. The model neglects any representation

of macropores.

2) In the approach where flow only occurs in macro-

pores, the water that infiltrates into the micropore

matrix stays in the system and can be depleted only

by transpiration. This approach is mostly used in

catchment scale bucket-style rainfall–runoff models.

3) The approach that simulates both micropore and

macropore flow.

3. Methods

In this paper we use a three-tiered modeling strat-

egy to evaluate how variations in model structure and

model parameters affect the temporal variability of

surface runoff and baseflow. First, we use a toy model

to clearly illustrate how inclusion of macropores can

increase the temporal variability of streamflow. Next,

we focus on variations of the Variable Infiltration

Capacity (VIC) model that include and exclude

macropores. Finally, we investigate the effect of spa-

tiotemporal model aggregation over longer time steps

as well as the VIC model behavior over various cli-

mates for the catchments of continental United States

based on the Catchment Attributes and Meteorology

for Large-Sample Studies (CAMELS) dataset (Addor

et al. 2017).

For the analyses of models’ simulations we rely

on the mean and standard deviation of the simulated

fast and slow reacting responses. We also carry out

recession analysis on the simulated flow to compare

the characteristics of the recession simulation by

various models.

a. Models

1) TOY MODEL

To start simple, we use toy models by following the

example of work by Koster and Milly (1997) and

Koster and Mahanama (2012) to isolate individual

processes, namely the macropore/micropore water

movement in soil. Using the toy model structure, we

define three models that emphasize different contri-

butions of macropore and micropore flow (refer to

appendix A for the full description of the models). The

models are as follows:

d Modelmicro: This model only simulates micropore flow

and lacks proper representation of macropore water

movement in the soilmatrix (only uniformflow through

micropore flow with no macropore flow). This model is

DECEMBER 2019 GHARAR I ET AL . 2403



constructed by setting the fraction of macropore flow,

parameter D, to 0.
d Modeldual: This model simulates both macropore and

micropore water movement.
d Modelmacro: This model simulates only macropore

water movement. The infiltration into the micropore

matrix is only depleted by transpiration, and no

percolation to more saturated soil layers (immobile

water in micropore space; only macropore flow). This

model is constructed by setting the maximum perco-

lation rate kmicro, to 0.

For the model simulations, the parameter ranges are

set as wide as possible to have as large model ensemble

as possible (Table 1). Each of the variations of toy

model is simulated 10 000 times from the feasible pa-

rameter space with marginal uniform distribution for

every parameter.

2) LAND MODEL, VIC MODEL

The VIC model is a relatively simple land model

(Wood et al. 1992; Liang et al. 1994). The process

conceptualization is based on the work of Zhao et al.

(1980) that computes the infiltration rate based on

the saturation or storage of the catchment. For this

study, we utilize VIC version 5 (Hamman et al. 2018),

which is forced by seven climatic variables, namely,

precipitation, pressure, wind, vapor pressure, tem-

perature, and longwave and shortwave radiation. The

soil parameters include saturated hydraulic conduc-

tivity, soil and bulk density, residual moisture, the

slope of water retention curve binf, the variable in-

filtration capacity shape function, and soil layer depth

identifying the active hydrological depth. Many of

these parameters are difficult to measure, especially

at larger spatial scale, and are often subjected to

calibration given the observed streamflow. Apart

from these parameters, and due to the fact that the

VICmodel is a mesoscale model implemented at large

scales, some of the soil physical parameters such as

saturated hydraulic conductivity Ksat and the slope of

water retention curve Eexp are also subjected to cali-

bration to find the most ‘‘effective’’ parameter values

at the scale of modeling. The VIC model also requires

vegetation parameters which include stomatal re-

sistance and leaf area index (LAI) that are used in

Jarvis formulation to simulate transpiration. The

Jarvis formulation considers factors such as temper-

ature, humidity, soil moisture and solar radiation

availability. The root zone depth is also indicated in

the vegetation parameters.

The effective precipitation, the amount of rainfall or

snowmelt that is not intercepted by vegetation foliage,

either enters the micropore matrix or is partitioned into

fast reacting surface runoff. The micropore water con-

tent is then transmitted between the top two soil layers

using an approximation of Richards’ equation (uniform

across grid as the VIC model only accepts one soil type

per layer per grid). The bottom (third) soil layer is

considered to be the baseflow or saturated layer that

generates the baseflow based on a maximum possible

flux per day Dsmax. Baseflow also depends on other

baseflow parameters, Ds, Ws, and c. More importantly,

baseflow depends on d3 that affects the saturation level

for a unit depth of soil, and therefore changes the

baseflow significantly. In this study and for the sake of

simplicity, we ensure that the root depths are equal to

the first two top layers, avoiding the penetration of roots

to the third layer that is responsible for baseflow

generation.

We designed five different variations of the VIC

model, in the following order:

d VICoriginal: this model has the exact structure of the

original VIC model. We perturb the parameters

binf, ksat, d1, d2, and the four baseflow parameters of

ARNO formulations, Dsmax, Ds and Ws as well as d3,

to evaluate the performance of this model behavior

TABLE 1. The parameter ranges of the toy model. To replicate Modelmicro, D is set to 0 and for Modelmacro, kmicro is set to 0.

Parameter Description Unit Range

Tsnow The temperature below which precipitation is considered to be snow 8C 22.00 to 2.00

cddf Degree-day factor for snowmelt for a unit of temperature above Tsnow mm 8C21 day21 1.00–5.00

Sumax Maximum soil moisture capacity mm 50.00–500.00

fthr Fraction of maximum soil moisture below which all the snowmelt and rainfall

enter the unsaturated zone.

— 0.10–0.90

fcrit Fraction of maximum soil moisture below which the transpiration is limited

by soil moisture

— 0.10–0.90

D Macropore volume fraction for partitioning the runoff to the fast and slow

reservoirs

— 0.00–1.00

kmicro Maximum percolation rate when storage is at its maximum, Sumax mmday21 0.00–10.00

kfast The fast reservoir coefficient day21 0.10–0.90

kslow The slow reservoir coefficient day21 0.01–0.10
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(for the sake of simplicity the power for the nonlinear

behavior of the baseflow cexp, is set to 2).
d VICoriginal_no_baseflow: this model is designed to evalu-

ate the effect of the original VIC baseflow on the

streamflow simulation. In this model we assume that

no baseflow module is present, and the baseflow is

considered to be the moisture transmitted from the

second layer. As the root depth is set to be equal to the

first two top layers, the omission of the baseflow layer

does not affect partitioning of precipitation to runoff,

baseflow, and transpiration.

We construct three different VICmodels with simplified

assumption on its baseflow component. The original

VIC baseflow, or the bottom layer, and its formulation is

replaced by a slow linear reservoir and its coefficient

(kslow). These models are as follow:

d VICmicro: this model is the closest to the original VIC

model, but with the difference that the baseflow layer

is replaced with a linear reservoir. The water that

feeds the baseflow reservoir is transmitted through the

soil layers only based on the micropore water move-

ment assumption as similar to the original VICmodel.
d VICdual: the other contributing flux to the slow linear

reservoir is fraction of generated surface runoff that is

transmitted through macropores to the slow linear

reservoir. This fraction is computed using a simple

macropore volume fraction D that varies between 0

and 1. The fraction of surface runoff that does not

enter the baseflow reservoir directly contributes to the

river network as surface runoff.
d VICmacro: this model is similar to VICdual, with the

difference that no micropore water movement is

allowed to percolate to the bottom soil layer (immo-

bile water in micropore space). The only flux that

contributes to the saturated linear flux is macropore

water movement as fraction of surface runoff, which is

identified by macropore volume fraction D.

Each of the VIC variations are run with 10 000 param-

eter sets sampled from the feasible parameter space

based on the parameter range reported in Table 2 with

uniform distribution along each parameter. Before an-

alyzing the model simulations, and to ensure that the

model simulations are realistic, a constraint is applied to

baseflow simulations of VICoriginal to ensure that the

bottom layer is not accumulating water throughout the

time period of the model simulation, which is typically

the case for the original VIC baseflow formulation.

Moreover, we ensure that the baseflow is not fixed at a

certain value for an extended period of time which

means the bottom layer might be fully saturated. We

would like to avoid this condition as the saturated bot-

tom layer, based on the VIC assumptions, passes the

excess water to the upper layers, which then changes the

composition of the runoff and baseflow separation. To

make sure that themodel states and fluxes are initialized

properly, we also allow 10 years of spinup period for all

the variations of VIC model.

b. Model simulations

1) SINGLE POINT SIMULATIONS

We initially evaluate single point simulations for a

location in the Canadian Rockies to provide an example

of model behavior. The forcing data is from WATCH-

Forcing-Data-ERA-Interim (WFDEI; Weedon et al.

2014), from a grid cell centered at 48.758Nand 113.758W.

The land cover of the point simulation is considered

to be forest. We use 37 years of the data, 1979–2016,

from which 10 years are used for spinup to make sure

that the original VIC (VICoriginal) baseflow is stable

as mentioned earlier, meaning that no water is accu-

mulated over time in the baseflow layer. For the toy

model we use the same dataset, WFDEI for the Cana-

dian Rockies, but only precipitation and temperature

are used as model forcings. Daily temperature and the

TABLE 2. The range of the model parameters for various VIC models.

Parameter Description Unit Range

binf The variable infiltration curve coefficient — 0.01–5.00

Ksat Saturated hydraulic conductivity mmday21 50.00–10 000.00

Eexp The slope of water retention curve — 3.00–12.00

d1 The depth of the first soil layer m 0.05–0.30

d2 The depth of the second soil layer m 0.30–2.00

d3 The depth of the bottom (third) soil layer m 0.30–2.00

Dsmax Maximum baseflow rate when the third layer is fully saturated mmday21 0.00–10.00

Ws The fraction of maximum baseflow at the point the baseflow becomes nonlinear — 0.00–1.00

Ds The fraction of the saturation after which the baseflow becomes nonlinear — 0.00–1.00

D Macropore volume fraction for partitioning the surface runoff into effective

runoff and macropore water movement.

— 0.00–1.00

kslow The slow reservoir coefficient day21 0.01–0.10
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latitude of the region of study are used to calculate the

potential evaporation based on the Hamon equation

(Hamon 1960).

2) SPATIOTEMPORAL AGGREGATION OF SINGLE

POINT SIMULATIONS

We perform additional simulations to evaluate the

extent to which results may bemasked by spatial routing

and temporal aggregation.

(i) Spatial routing

Often the surface runoff and baseflow simulations

from a land model are routed over a larger area using a

routing scheme that aggregates the model simulation

from many points into one or few point(s). It is hence

important to evaluate the extent to which level this ag-

gregation smooths or masks the model simulation at

the grid level. To investigate this effect, we set up a

synthetic routing model based on diffusive wave for-

mulation and assumptions on the relation of river length

and river basin size that are based on Hack’s law (refer

to appendix B for the detailed explanation of the routing

model). We then route the fast and slow simulations of

VICoriginal for basins of various sizes of 1000, 10 000, and

100 000 km2 assuming a similar grid of 100 km2 with no

heterogeneity (parameters and forcing are the same for

all the grids). We then compare the routed results for

various spatial scales.

(ii) Temporal aggregation

Despite the fact that land models use simulation time

steps shorter than a day, these models are often evalu-

ated at temporal resolution of day(s), and for larger

basins with human interference even longer, month(s).

Similar to spatial routing, the structural deficiencies of

land models may be masked by temporal aggregation.

To check this effect, we simply aggregated the model

output from the VICoriginal to a monthly scale and

evaluate the summary metrics of the fast and slow flow.

3) CONUS SIMULATIONS

To investigate the wider behavior of the VIC model

fast and slow flow components across larger spatial do-

main and with different forcing data, we make use of the

calibrated VIC setup for the 531 individual basins in the

CAMELS dataset [for the details of forcing, soil, and land

cover data, please refer to Mizukami et al. (2017)]. We

look into the best performing simulated runoff and

baseflow for every individual basin of interest. This test is

used to check if the overall VIC behavior from the single-

point simulations is representative of behavior for small

to mesoscale catchments across the contiguous United

States that span over various climate, soil and land cover

and topographical conditions. To compare the simulated

and observed hydrographs in recession behavior, we in-

vestigate the recession parameters for observed and

simulated hydrographs for each individual basins.

c. Diagnostic methods and metrics

1) MEAN AND STANDARD DEVIATION

To compare the behavior of the fast and slow flow for

every model simulations, commonly used summary

metrics, the mean and standard deviation of the simu-

lated time series are used. We also compare the mean of

the fast and slow flow ensembles of each model visually.

2) RECESSION ANALYSIS

As a diagnostic tool, we carry out recession analysis

on the simulated hydrographs. Recession analysis is

one of the simplest methods to get insights on the

catchment/basin characteristics based on the observed

hydrograph. There have been numerous methods for

the recession analysis and baseflow separation. In this

study we use the widely used empirical relationship

between the streamflow value and its rate of change as

a power function:

2
dQ

dt
5 aQb , (1)

where a is the intercept of the relationship when Q is

equal to 1 and b is the slope of the log–log plot for dQ/dt

versus Q. During the recession period when there is no

precipitation input, the storage–discharge relationship

for the reservoir that discharges slow flow component

can be expressed as

dS

dt
52Q . (2)

Discharge Q during the recession is generally described

as a function of storage in the models:

Q5
1

c
Sd . (3)

The parameter c is usually referred to as a retention

time of the reservoir, and c21 is referred to as a reservoir

coefficient. The parameters a, b, c, and d are interrelated.

The relationship between the parameters in Eqs. (1)

and (3) can be found by inserting Eq. (3) into Eq. (2) as

follows (Clark et al. 2009):

a5 c21/dd , (4)

b5 22
1

d
, (5)
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c5 [a(22 b)]1/(b22), and (6)

d5
1

22b
. (7)

To identify the recessions, we use a similar approach

proposed by Vogel and Kroll (1992). First, we applied a

moving average of five days and considered the re-

cession part of smoothed hydrograph when the change

of two consecutive time steps are less than a certain ratio

(in this case less than 20% of previous time step). We

retain recessions that are longer than six time steps

(i.e., 6 days) for this study.

If we logarithm transform both sides of Eq. (1),

log

�
2
dQ

dt

�
5 log(aQb) , (8)

using the logarithm rules, we can rewrite the above

equation as

log

�
2
dQ

dt

�
5 log(a)1 b log(Q) , (9)

which has the form of a linear relationship between

log(dQ/dt) and log(Q) as variable from which a and b

can be calculated. The parameters a and b can be cal-

culated for every model simulation of the ensembles

resulting in an ensemble of recession parameters which

can shed light onmodel behavior. Figure 2 illustrates the

graphical implementation of the recession analyses on

an observed hydrograph.

4. Results

a. Toy model

Figure 3 illustrates the mean and standard devia-

tion of the fast and slow reacting components, mac-

ropores and micropores, respectively, for each of the

10 000 model parameter sets for the three variations

of the toy model. Modelmicro, which represents

structure similar to land models, has a very distinct

behavior where there is strong separation between

fast and slow reacting components. The summary

metrics of the two flow pathways do not overlap in

Fig. 3a which results in a two distinctive segregated

fast and slow response from the model. This can be

visually inspected in Fig. 3b, which shows the mean

values of the baseflow and fast flow of the ensemble

simulations.

Figure 3e shows the summary metrics of Modelmacro

that only allows for preferential flow. This model

generates summary metrics of fast and slow reaction

which overlap, meaning there are ensemble mem-

bers with smoother transition between the model

fast and slow simulations. From Fig. 3f it is clear that

the slow reacting reservoir of Modelmacro is able to

produce baseflow fluxes with higher variability and

shorter recession in comparison with the other two

models.

Modeldual is an intermediate model between

Modelmacro andModelmicro. Similar toModelmicro,Modeldual
also generates a slow responding baseflow with higher

values compared to Modelmicro. The reason for this in-

flation in baseflow inModeldual is that the unsaturated zone

is depleted bymicroporewatermovement, which results in

lower soil moisture and eventually results in more pre-

cipitation to enter micropores and a higher contribution of

baseflow in the model simulations. A closer look at the

model shows that theModelmacro is able to generate peaks

flows during the dry period. By contrast, Modelmicro and

Modeldual have lower peak flows because all ormore of the

effective rainfall is transmitted through the soil matrix and

contributes to the flow as a diffused signal. This may

hamper the power of the model for flood generation dur-

ing dry periods characterized by rapid preferential flow.

Recession analyses are performed for each of the

10 000 simulations. Figure 4 shows the parameters

a and b for the simulations for each of the three

models. The result shows that Modelmicro and Modeldual
are inherently different in their recession behavior.

Modelmicro, which is similar to the land models and

emphasize micropore movement of water, generate re-

cessions with parameter a less than 0.05 day21 (or pa-

rameter c longer than 20days). Its center of mass, mean,

for parameter a is around 0.02, which means recession of

FIG. 2. (a) The shaded areas are the parts of the hydrograph that are selected as recession analysis. (b) The relationship between dQ/dt

andQ and its linear relationship between them with a and b equal 0.076 and 1.027, respectively. Streamflow data fromMaumee River at

Waterville, OH, USGS 04193500 (USGS 2019).
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approximately 50 days and longer. Therefore the struc-

ture of Modelmicro constrains model capabilities to

simulate flashier catchments with retention time less

than 20days. On the other hand, the model with mac-

ropore flow, or preferential flow, similar to widely used

catchment scale bucket-style rainfall–runoff models, are

able to produce the retention parameter of a up to

0.2 day21 or c values as low as 5 days.

Parameter b remain always above 1 as the recession is

combination of a linear behaving reservoir, slow/saturated

reacting reservoir and a fast component, direct con-

tribution to streamflow. If the slow recession is also

FIG. 3. The summarymetrics, mean and standard deviation, for fast (red) and slow (blue) reacting components of

the simulated hydrographs bymodel (a)Modelmicro, (c) Modeldual, and (e) Modelmacro and the mean of the fast and

slow simulations ensemble over time by (b) Modelmicro, (d) Modeldual, and (f) Modelmacro.

FIG. 4. Comparison of the recession analysis, a and b parameters, for the three different model.
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considered to be nonlinear then themodel will be able to

even generate wider combination of parameter a and b.

Modeldual shows an intermediate performance of the

two but tend to emphasis on longer recessions compare

to Modelmicro as it was also the case in Fig. 3d.

b. Application to a land model, VIC

1) STRUCTURAL DIFFERENCES

Similar to the analyses on the toy models, the mean

and standard deviation of the five variations of the

VIC model are illustrated in Fig. 5. Figure 5a shows the

mean and standard deviation of fast and slow flows for

VICoriginal setup. The fast flow component illustrated in

red are clustered around a line. This line can be

represented by intercept of 0 and slope of standard de-

viation over mean of precipitation over the entire

period of modeling. Similar to the toy model, the sum-

mary metrics of the fast and slow flows do not overlap

for VICoriginal. VICoriginal_no_baseflow is a variation of

VICoriginal in which the output from the second layer is

treated as baseflow. The result shows that the baseflow

response becomes very flashy and even can dominate

the fast-reacting component. Therefore, we add a simple

linear reservoir instead of the more complex VICoriginal

baseflow to account for the baseflow separation.

VICmicro, which is similar to the VICoriginal with the

difference of a simplified baseflow, acts similarly to

VICoriginal. The slow flow component, or baseflow, is

even less diverse considering the cloud of mean and

standard deviation in comparison to VICoriginal as the

simplified baseflow has less degree of freedom in com-

parison to the VICoriginal baseflow formulations. VICdual,

which allows both macropores and micropores water

movement, has a less strong runoff reaction as more

water is moved to the baseflow and therefore less soil

moisture result in less runoff generation in general. This

is similar to Modeldual. VICmacro, which allows for

macropore water movement only, result in higher and

more diverse variability of the fast flow. This is due to

the fact that the soil moisture is immobile and not de-

pleted by the micropore movement to the baseflow and

therefore the top soil layers remain wetter which result

in more runoff generation compare to the VICmicro and

VICdual. The macropore volume fraction D that re-

directs part of surface runoff tomore saturated reservoir

also diversifies the fast flow response of the VICmacro.

Moreover, the slow reacting component of model

VICmacro has shorter recessions than the other model

that allows for micropore water movement. VICmacro

also generated higher peaks, which are essential in

model capabilities to capture peaks during flood event

especially in drier periods.

(i) Parameter effect on the spread of runoff and
baseflow for VICoriginal

To evaluate the effect of the original VIC model,

VICoriginal, parameters on the spread of mean and

standard deviation presented in Figure 5a, we evaluate

the change in variation in the mean-standard deviation

plot by changing the target parameters. Please note that

this is only an illustrative example and is not a com-

prehensive sensitivity analysis. The patchiness in the

figures is clusters of sets of parameters that are selected

for visualization in 2D space of that target parameter

while two or three other parameters are varied in their

ranges. Moreover, the parameters sets are not identical

for each and every panel for the visualization purposes.

For the analysis, we first perturb the parameters binf,

Ksat, d1, and d2, which are responsible for baseflow/runoff

separation in the original VIC model, VICoriginal. In-

creased binf will result in higher mean and variability in

runoff while it reduces the mean and standard deviation

of the baseflow as it redirects more water to runoff

(Figs. 6a,f). Saturated hydraulic conductivityKsat acts the

opposite direction, increasedKsat results inmore water to

be transported to the baseflow layer, less soil moisture

and therefore more infiltration to the soil and therefore

reduced runoff (Figs. 6b,g). Parameters d1 and d2 act

similarly: increasing d1 and d2 will decrease the mean and

variation of baseflow (Figs. 6c,d,h,i). Increased depth will

result in more water to be stored in the system, which in

turn results in lessmean and variability of the output both

as runoff and baseflow. Figures 6e and 6j show the general

effect of the parameters perturbation on generation of

runoff and baseflow mean and variability.

Second, we look into the baseflow parameters,

namely, Ds, Dsmax, Ws, and d3 (cexp is fixed at 2). In this

case, the higher Ds result in higher baseflow variation.

Increased Dsmax results in increased variation in the

baseflow behavior as well. Increased Ws results in in-

creased baseflow variation, while increased depth d3
results in a decreased variation. The trend forDsmax and

d3 can be inferred directly from the VIC baseflow for-

mulation, the sign for Dsmax is positive and also in-

creased depth d3 results in lower saturation level which

in turn decreases the baseflow variability. Parameters

Ds and Ws, however, may show more complex behav-

ior than described here. If the constraints were not

imposed on baseflow behavior, the Ds, Dw interplay

would result in more complex behavior.

(ii) Parameter effect on the spread of runoff and
baseflow for VICmacro

We carry out similar illustrative sensitivity analyses to

understand the effect of each parameter on the mean
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and standard deviation of the fast and slow response

of the VICmacro presented in Fig. 5i for the target pa-

rameters binf, d2, Kslow, and D. For this analysis, to

simplify the case, we fix d1 at 10 cm. Increased binf results

in lower variability of runoff. Higher binf results in less

water entering the soil layer, which in turn results in a

dryer condition, which in turn results in less flashy be-

havior of the system during a rainfall event (Fig. 7a). For

the baseflow, as macropore water movement is consid-

ered to be a fraction of surface runoff that is defined by

FIG. 5. The summary metrics, mean and standard deviation, for fast (red) and slow (blue) reacting components of

the simulated hydrographs bymodel (a)VICoriginal, (c)VICoriginal_no_baseflow, (e)VICmicro, (g)VICdual, and (i)VICmarco

and simulation of the mean of the fast and slow ensemble over time by (b) VICoriginal, (d) VICoriginal_no_baseflow,

(f) VICmicro, (h) VICdual, and (j) VICmarco.
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D, increased binf results in increased mean and variability

of baseflow response (Fig. 7f). Larger soil depth, d2,

translates into more storage, which results in less baseflow

and runoff mean and variability. Increased Kslow, the

simplified baseflow coefficient, results in increased base-

flow variability. Increased macropore volume fraction

parameterD results inmorewater going to baseflow and a

higher mean and variability for this flux, while it results in

less mean and variability for the fast flow component.

2) RECESSION BEHAVIOR

A similar recession analysis depicts that original VIC

model, VICoriginal, is not able to generate recessions

that have an a parameter of more 0.025 than or c pa-

rameter less than 40 days, while VICmacro can generate

recession parameter a that is as high as 0.15 or c

parameter of approximately 8 days, indicating that

VICmacro is capable to replicate the behavior of flashier

basins or headwater catchments (Fig. 8). The other

models overall produce lower values of parameters a

than VICmacro even though they can produce higher

value than VICoriginal. This indicates that micropore

water process will put a heavy weight on generating

longer recessions.

c. On the effect of routing on the model simulation

As explained earlier, spatial routing might mask the

representation of subsurface processes in land models.

To address this issue, we route the original single-point

VIC simulation, VICoriginal through a simple routing

model explained in appendix B. Figure 9 illustrates the

mean and standard deviation of the routed fast and slow

flow at the basin outlet for basin sizes of 1000, 10 000,

and 100 000 km2. The results indicate that the larger the

basin gets, the standard deviation of fast response

summary metrics are reduced and overlap with slow

response summary metrics. Figure 9 also illustrates that

as the basin size gets larger the hydrograph become

smoother, and therefore, calibrated model for large

river basin can generate a smooth looking hydrograph

with a good transition between fast and slow flow while

its component at every grid may not follow the same

smooth transition. Since streamflow for larger basins is

highly affected by the routing, the subsurface structure

FIG. 6. The change inmean and standard deviation for the runoff (a) binf, (b)Ksat, (c) d1, and (d) d2, and the change inmean and standard

deviation for the baseflow for (f) binf, (g)Ksat, (h) d1, (i) d2, (k)Ds, (l) Dsmax, (m)Ws, and (n) d3 for VICoriginal. The overall changes in mean

and standard deviation for target parameters are presented in (e), (j), and (o). The lighter color for the points means a higher value of

normalized parameter ranges. Please note that this is only an illustrative example and is not a comprehensive sensitivity analyses. The

patchiness in the figures is the cluster of sets of parameters that are selected for visualization in 2D space of that target parameterwhile two

or three other parameters are varied in their ranges. Moreover, the parameters sets are not identical for each and every panel for

visualization purposes.
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of the model is masked by the routing formulation and

river network shape. This should be taken into consid-

eration when evaluating land model performance of

spatially aggregated point simulations.

d. On the effect of temporal scale on the model
simulations

To evaluate the impact of temporal scale, we compare

the mean and standard deviation of the generated fast

and slow flow components before and after aggregation

of themodel output over monthly periods. Similar to the

spatial aggregation, the summary metrics in Fig. 10 il-

lustrate that the fast and slow reservoirs have more

overlap for longer monthly aggregation periods.

e. VIC model fast and slow simulations across
CAMELS dataset

We analyze the calibrated simulations of runoff and

baseflow of the original VIC, VICoriginal, in this study, for

the 531 catchments of CAMELS dataset for continental

United States based on the work of Mizukami et al.

(2017). We evaluate the mean and standard deviation of

the fast and slow reacting reservoirs in every basin

(Fig. 11a). Figure 11 clearly shows that the fast and slow

reacting reservoirs have distinctive behavior, which is

similar to the results from the single point simulations.

We also evaluate the mean of the fast and slow reservoir

in Fig. 11b, which shows that most of the model simu-

lations for the basins are putting more emphasis on the

baseflow generation than surface runoff.

Furthermore, Fig. 12a indicates the recession param-

eter a for observed streamflow has higher values com-

pared with the same recession parameter for the VIC

simulations as the cloud of points for the observation

recession parameters are shifted to higher values com-

parably. Themedian values also shows a higher value for

the recession parameter a for observed streamflow.

Figure 12b also indicates that, overall, the recession

FIG. 7. The change in mean and standard deviation for the runoff (a) binf, (b) d2, (c) Kslow, and (d)D and the change in mean and standard

deviation for the baseflow for (f) binf, (g) d2, (h) Kslow, and (i) D for VICmacro. The overall changes in mean and standard deviation for target

parameters are presented in (e) and (j). The lighter color for the pointsmeans ahigher valueof normalized parameter ranges. Please note that this

is only an illustrative example and is not a comprehensive sensitivity analyses. The patchiness in the figures is the cluster of sets of parameters

that are selected for visualization in 2D space of that target parameter while two or three other parameters are varied in their ranges.

FIG. 8. The comparison of the recessions analysis, a and b parameters, for different VIC variations (a) VICoriginal, (b) VICoriginal_no_baseflow,

(c) VICmicro, (d)VICdual, and (e)VICmacro.
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parameter a is larger for the observation than the sim-

ulation, which reflects on the fact that model simulations

are often simulating longer recessions than is usually

observed in streamflow. It should be noted that the VIC

simulations of the CAMELS dataset at the basin level

underwent an in-basin routing that already masked the

runoff and baseflow segregation of the VIC model,

however the applied in-basin routing is not sufficiently

enough to adjust the existing bias between the recession

parameters in simulated and observed streamflow.

5. Discussion

In this study we showed that the structure of land

models greatly simplifies the heterogeneity of the flow

paths in nature. The land model signature is flashy

runoff superimposed on slow recessions. Such behavior

is constrained by the land model structure, imposing

difficulties in simulating the temporal variability in

streamflow across a range of different environments.

Such distinctive model behavior is masked by two

major factors that can hamper the structural diagnosis

of land model weaknesses. First, model simulations are

often aggregated over longer periods of time such as

weekly or monthly (Melsen et al. 2016), which might

hide the high temporal resolution deficiencies of simu-

lations at the grid or point scale. Second, model simu-

lations are typically aggregated over a large area using a

routing scheme, which might also mask the subsurface

structural deficiencies of the land models.

FIG. 9. Mean and standard deviation for basin sizes of (a) 1000, (c) 10 000, and (e) 100 000 km2 and mean of the

simulated fast and slow flow for basin sizes of (b) 1000, (d) 10 000, and (f) 100 000 km2 for the simulation from

original VIC, VICoriginal.

FIG. 10. The comparison between the mean and standard de-

viation of fast and slow components of VICoriginal in red and blue,

respectively, aggregated at a (a) daily time step and (b) monthly

time step.
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This raises the question ‘‘Do land models get the right

answers for the right reasons?’’ (Kirchner 2006). We

argue that a structurally ill-posed model at the grid scale

is able to yield satisfactory streamflow simulations if

aggregated over spatiotemporal scales, yet ill-posed

models are clearly poorly suited for many of their de-

sired applications. The presented analyses on the ade-

quacy of the land model structures can contribute to the

ongoing debate on hyper resolution models (Wood et al.

2011; Beven and Cloke 2012; Wood et al. 2012; Beven

et al. 2015). We argue that hyper resolution efforts need

to fundamentally evaluate the ability of models in re-

producing the temporal variability of streamflow across

different space and time scales. Moreover, we empha-

size the need for more diagnostic evaluation of land

models in the context of flood forecasting. For example,

and given our results, land models have difficulty simu-

lating the rapidly rising limb of the hydrograph for

shorter residence times. Additional model development

is necessary for land models be applicable for a wider

range of applications.

A possible way forward to include the preferential

flow using the current land model structure, although

the structure does not account for macropores explic-

itly, is to allow multiple landscape tiles with different

soil properties (e.g., see Harman et al. 2009). This en-

ables selecting soil parameters from a distribution

rather than relying on a suggested value or only one

value. Our case of the VICmacro model presented in

section 3a(2), can be a specific case of the model with

variable soil parameters: we can increase the fraction of

preferential flow by assuming higher hydraulic con-

ductivity than is suggested in laboratory soil properties

and soil maps [for reading and references, refer to

Nimmo (2012), Jarvis et al. (2016), and Beven (2018)].

Therefore, it is possible to mimic the VICmacro simu-

lations using the original VIC model, VICoriginal, with

two or more landscape tiles. Dual or multiple repre-

sentations of the soil property provides the models with

more agility to mimic the system behavior rather than

choosing a fixed parameter. This is aligned with the

concept of dual/multipermeability discussed widely in

the context of water movement in the prose medium in

modeling framework such as HYDRUS (�Sim�unek and

vanGenuchten 2008). The dual/multipermeability is an

attempt to achieve a more realistic representation of

natural system behavior using the widely used Richards

formulation for water movement in a porous medium

to fulfill the observations that often do not follow the

uniformity assumption. We remind the reader that

identifying the dual or multiple characteristics of a

porous medium may not be a straightforward task, as

these data should be inferred from the observation and

may depend on various factors especially at the larger

scale, as it is often the case for land models. There-

fore, identifying and inferencing the parameters and

FIG. 11. (a) The mean and standard deviation (each point represents a CAMLES dataset basin) and (b) mean of

the simulated runoff and baseflow for the original VIC setup, VICoriginal, for all the 531 catchments of the CAMELS

dataset over time across the continental United States.

FIG. 12. The comparison of the recessions analysis, a and b pa-

rameters, for observed streamflow (blue) and VIC simulation (red)

for 531 catchments of the CAMELS dataset across the continental

United States. The dashed line indicates the median of the re-

cession parameters for the observation and simulations in blue and

red, respectively. (b) The cumulative distribution plot for the re-

cession parameter a for observed and simulated streamflow in blue

and red, respectively.
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structure of macropore flow, due to heterogeneity and

structure of the pore connectivity, is case and scale de-

pendent. The future challenge remains on how to ade-

quately understand and conceptualize the wide range of

preferential flow types at various scales [e.g., rapid sub-

surface flow at hillslope scale or preferential recharge to

(perched) aquifer] and how to identify the parameters of

the designedmodels to achieve the highest fidelity. There

have been studies that investigated the effect of explicitly

representing preferential flow for hillslopes in land

models (Soulis et al. 2000; Craig et al. 2010; Hazenberg

et al. 2015), however including the preferential flow ex-

plicitly in the landmodels and its effect of the behavior of

land models, preferential flow and soil moisture, is still in

its infancy (e.g., see Milly et al. 2014; Nijzink et al. 2016;

Rahman and Rosolem 2017).

6. Conclusions

The conclusions from this paper can be summarized

as follows:

d The typical structure and formulation of land models

does not allow for macropore water movement. The

lack of macropore water movement results in two

distinct fast and slowmodel simulations, characterized

by flashy runoff superimposed on slow recessions.
d Without representation of macropore water move-

ment in the model, the land model structure has

difficulties simulating the range of natural system

responses often observed in streamflow.
d The structural deficiencies and assumptions in land

models are masked by aggregating results over longer

time periods, such as month, or over larger areas

through routing.

Based on the results presented in this paper, we join

the call from Fan et al. (2019) to explicitly include

more of the known processes at hillslope and catch-

ment scales in land models. This is important because

hillslopes are known to be fundamental elements of

catchment response, especially during flood events.

We therefore, encourage more diagnostic approaches

to evaluate the utility of land models for flood fore-

casting. Representing preferential flow can open

the door to more comprehensive model analyses

(e.g., recession analyses) that can help identify model

parameter values. An alternative path forward to

include the macropores implicitly in the current land

models is to allow a soil property distribution at a

grid rather than fixing the soil parameters to per-

haps highly uncertain soil maps and their attri-

butes. Moreover, our proposed structural changes can

better accommodate the two water world hypothesis

(McDonnell 2014), where explicitly representing

preferential flow enables passing new water to the

stream while older water remains in soil micropores.

We look forward to more hydrologically oriented

land model development, along with more incisive

diagnostic studies to identify and address weaknesses

in land models.
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APPENDIX A

Toy Model

The water balance functions for the toy model are

summarized as follows (see Fig. A1).

a. Snow

The snow reservoir Ssnow is fed by qsnow (mmday21),

which represents the precipitation as snow when air

temperature Tair (8C) is less than Tsnow (8C). Model

parameter Tsnow defines the temperature below which

the precipitation is snow. The snow reservoir is depleted

by snowmelt qmelt (mmday21), which is based on the

degree-day factor cddf (mm 8C21 day21) that correlated

the snowmelt qmelt to the temperature difference above

Tsnow (Tair 2 Tsnow).

b. Unsaturated zone

The melted snow qmelt from the snow reservoir or

rain qrain partly enters the soil moisture reservoir. This

partitioning is based on the amount of the water stored

in the unsaturated zone Su (mm) and two model pa-

rameters, the maximum storage of the unsaturated

zone Sumax (mm) and the shape function b (unitless). It

is assumed that the snowmelt qmelt and rainfall Prain

entirely enters the unsaturated zone if the storage of

the unsaturated zone is less than the fraction identified

by fthr that represents the system threshold for re-

sponding to precipitation based on the fill and spill

mechanism. The unsaturated zone is depleted by two

processes. Transpiration ET (mmday21), which is cal-

culated as a fraction of potential evaporation

Epot (mmday21), is calculated based on daily temper-

ature using the Hamon equations (Hamon 1960).

The transpiration is considered to be equal to potential

evaporation when the amount of water stored in the

soil moisture reservoir is more than a fraction of

the total storage Sumax described by fcrit (unitless).
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Transpiration is reduced linearly with the soil moisture

when the soil moisture falls below the fraction identi-

fied by fcrit. The soil moisture is also depleted by the

percolation to slow or saturated reservoir. The perco-

lation is linearly related to the level of saturation, de-

fined as the ratio of soil moisture to the maximum soil

moisture Su/Sumax and the maximum percolation rate

or saturated hydraulic conductivity defined by kmicro

(mmday21).

c. Fast and slow saturated zones

The amount of water that did not enter into the soil

moisture will be split between the fast and slow reservoir,

SF and SS, based on macropore volume fraction D

(unitless) that represents the fraction of macropore

flow to the slow saturated zone. The fraction of the

water that does not enter the soil moisture in the slow

reservoir is considered to be surface runoff and is

added to the fast reservoir. The fast and slow reservoirs

are linear reservoirs that are defined by parameters

kfast (day
21) and kslow (day21), respectively. The sim-

ulated discharge is the summation of the fast and slow

flows, Qm 5 qslow 1 qfast.

The model state equations in Table A1 are solved

using a forward explicit method inwhich the states of the

next time step are dependent only on the state of the

current time step of the model.

APPENDIX B

The Synthetic Routing Scheme to Evaluate the
Effect of Routing on Hydrograph Simulation

To evaluate the effect of the routing scheme on the

simulated hydrograph at the outlet of a basin, a synthetic

routing scheme is designed as below:

1) We assume a basin total area (e.g., 1000 km2).

2) The total number of grid cells are the total area of

basin divided by 100km2 (assuming that each grid is

10 km 310km).

FIG. A1. The schematization for the toy models. By setting the

macropore volume fraction D to 0, the slow reservoir Ss is only

fed by micropore water movement qmicro, which is named as

Modelmicro. By setting the macropore volume fraction to a value

between 0 and 1, the slow reservoir is fed by both macropore and

micropore water movement, qmicro and qmacro, which is named as

Modeldual. By setting the kmicro to 0 and allowing the macropore

volume fraction between 0 and 1, the slow reservoir is fed only by

macropore water movement qmacro, which is named as Modelmacro.

TABLE A1. The water balance and flux equations for the toy model.

Reservoir Water balance equation Fluxes

Snow dSsnow/dt5 qsnow 2qmelt qsnow 5

�
0, Tair .Tsnow

P, Tair #Tsnow

qmelt 5

�
cddf(Tair 2Tsnow), Tair .Tsnow

0, Tair #Tsnow

Unsaturated dSu/dt5qi,u 2 qmicro 2ET qi,u 5qtotal(12As)

ET 5

(
Epot, Su . fcritSumax

Epot[Su/(fcritSumax)], Su # fcritSumax

qmicro 5 kmicro(Su/Sumax)

As 5

(
0, Su # fthrSumax

[(Su 2 fthrSumax)/(Sumax 2 fthrSumax)]
b, Su . fthrSumax

qrain 5

�
P, Tair .Tsnow

0, Tair #Tsnow

qtotal 5qmelt 1qrain

Fast dSf /dt5qi,f 2qfast qi,f 5qtotalAs(12D)

qfast 5kfastSf

Slow dSs/dt5qi,s 2qslow qi,s 5 qmacro 1 qmicro

qslow 5 kslowSs

qmacro 5qtotalAsD
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3) The longest river in the basin can be correlated with

the basin size using Hack’s law (Hack 1957):

L
max

5 1:4A0:6,

in whichA is the basin area in square miles and Lmax

is the longest river segment in the basin expressed

in miles.

4) We assume that the grid cells have a distance to the

outlet that follows a normal distribution with a mean

of half of the maximum length obtained from the

Hack’s law and a standard deviation equals 1/3 of the

mean value.

5) We assume that the convolution function for every

grid cell follows the following formulas:

h(x, t)5
x

2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ptD

diff

p exp

"
2
(Vt2 x)2

4D
diff

t

#
,

in whichDdiff is diffusivity that is fixed at 4000m2 s21

and V is velocity of 0.5m s21. Parameter h(x,t)

represents the routed discharge at point of x and

time t from every single grid cell.

6) The final simulated hydrograph is sum of the convo-

luted grid simulation at the outlet.
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