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Introduction

Students, unless highly motivated, tend to bypass introductions and it is left to the lecturer to find out what
a book hopes to achieve. This book is based on The Physics of Vibrations and Waves (Wiley) which first
appeared in 1968. The principles of that book were stated in its introduction and remain valid today. The
theme is that a medium through which energy is transmitted via wave propagation behaves essentially
as a continuum of coupled oscillations. A simple oscillator is characterized by three parameters, two
of which are capable of storing and exchanging energy, while the third is energy dissipating. This is
equally true of any medium. The product of the energy storing parameters determines the velocity of
wave propagation through the medium and, in the absence of the third parameter, their ratio governs the
impedance which the medium presents to the waves. The energy dissipating parameter introduces a loss
term into the impedance, energy is absorbed from the wave system and it attenuates.

This viewpoint allows a discussion of simple harmonic, damped, forced and coupled oscillators which
leads seamlessly to the behaviour of transverse waves on a string, longitudinal waves in a gas and a solid,
to current and voltage waves on a transmission line and electromagnetic waves. All are amenable to this
common treatment and it is the wide validity of relatively few physical principles which this book seeks
to demonstrate.

What has changed since 1968 has not been in the students’ favour. At that time the required mathe-
matics had been done at school or was covered in the first weeks of a university course. This is no longer
true and a major effort has been made in this book to address this change. Great emphasis is placed on
the fact that a single mathematical principle covers a wide range of physical situations. There are three
major principles used continuously throughout the book which may not be familiar to every student.
They are:

(1) The square root of minus 1 (i).
(2) The exponential series (and its connection with the binomial theorem).
(3) Taylor’s theorem which appears at the end of Chapter 4.

As principles (1) and (2) are already needed in Chapter 2, it has been decided to provide numbered
working plans on these topics and sufficient examples at the beginning of Chapter 2 to help students
over any difficulties, particularly if guided by a tutor. Where helpful, references to these are made in the
text. A detailed derivation of the binomial theorem and its connection with the exponential series can be
found at the end of the book together with an explanation of the Taylor series.

Each chapter contains a number of worked examples on which problems may be based.
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Table of Constants

Charge on electron 1.602 × 10−19 coulombs
Rest mass of electron 9.1 × 10−31 kilograms
Atomic mass unit 1.66 × 10−27 kilograms
1 newton 105 dynes
1 electron volt 1.6 × 10−19 joules
Planck’s constant h 6.62 × 10−34 joule sec
Boltzmann’s constant k 1.38 × 10−23 joules/degree

8.61 × 10−5 electron volt/degree
Avogadro’s number 6.022 × 1023 per mole
Velocity of light c 3 × 108 metres/sec
Permeability of free space μ0 4π × 10−7 henries/metre
Permittivity of free space ε0 (36π × 109)−1 farads/metre
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Table of Energy Storing Processes

Table showing how energy storing processes in a medium govern the wave velocity and the impedance. Potential
energy is stored in medium via parameter C and kinetic or inductive energy is stored by ρ or L.

Type of Wave (Velocity)2 Impedance Symbols

transverse on string T/ρ ρc T tension
ρ linear density
c wave velocity

longitudinal in gas γP/ρ = B/ρ = (ρC)−1 ρc =
√

ρ/C γ specific heat ratio
P gas pressure
B bulk modulus
C compressibility
c wave velocity

voltage and current on
transmission line

(L0C0)
−1

√
L0/C0

L0

C0

inductance
capacitance

}
per unit
length

electromagnetic waves in
a dielectric

(με)−1
√

μ/ε μ permeability
(henries/metre)

ε permittivity (farads/metre)
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1
Simple Harmonic Motion

Notes to the students

After reading this chapter and completing the problems, you will understand:

• What a simple harmonic oscillator is.
• How a simple harmonic oscillator is described mathematically.
• How to use the equations describing simple harmonic motion to extract quantities of physical interest.
• The wide variety of physical systems that behave as simple harmonic oscillators. This will include

all the oscillators and waves in this book except those in the last chapter.
• One of the most important things to learn as a physicist is that many seemingly different systems can

be described in the same mathematical terms.

At first sight the eight physical systems in Figure 1.1 appear to have little in common.

1.1(a) is a mass fixed to a wall via a spring of stiffness s sliding to and fro in the x direction on a
frictionless plane.

1.1(b) is a simple pendulum, a mass m swinging at the end of a light rigid rod of length l.
1.1(c) is a flat disc supported by a rigid wire through its centre and oscillating through small angles in

the plane of its circumference.
1.1(d) is a mass m at the centre of a light string of length 2l fixed at both ends under a constant tension

T . The mass vibrates in the plane of the paper.
1.1(e) is a frictionless U-tube of constant cross-sectional area containing a length l of liquid, density

ρ, oscillating about its equilibrium position of equal levels in each limb.
1.1(f) is an open flask of volume V and a neck of length l and constant cross-sectional area A in which

the air of density ρ vibrates as sound passes across the neck.

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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2 Introduction to Vibrations and Waves

1.1(g) is a hydrometer, a body of mass m floating in a liquid of density ρ with a neck of constant cross-
sectional area cutting the liquid surface. When depressed slightly from its equilibrium position
it performs small vertical oscillations.

1.1(h) is an electrical circuit, an inductance L connected across a capacitance C carrying a charge q.

All of these systems are simple harmonic oscillators which, when slightly disturbed from their equilib-
rium or rest postion, will oscillate with simple harmonic motion. This is the most fundamental vibration
of a single particle or one-dimensional system. A small displacement x from its equilibrium position sets
up a restoring force which is proportional to x acting in a direction towards the equilibrium position.

Thus, this restoring force F in Figure 1.1(a) may be written

F = −sx

where s, the constant of proportionality, is called the stiffness and the negative sign shows that the force
is acting against the direction of increasing displacement and back towards the equilibrium position.
A constant value of the stiffness restricts the displacement x to small values (this is Hooke’s Law of
Elasticity). The stiffness s is obviously the restoring force per unit distance (or displacement) and has
the dimensions

force

distance
≡ MLT−2

L
where T is time

The equation of motion of such a disturbed system is given by the dynamic balance between the forces
acting on the system, which by Newton’s Law is

mass times acceleration = restoring force

or

mẍ = −sx

where the acceleration

ẍ =
d2x
dt2

This gives

mẍ + sx = 0

or

ẍ +
s
m

x = 0

where the dimensions of

s
m

are
MLT−2

ML
= T−2 = ν2
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Simple Harmonic Motion 3

s

m

x

mẍ + sx = 0

(a)

(c)

(e) (f)

(d)

(b)

ω2 = s/m

l

x

m

mg

θ ω2 = g/l

mlθ̈ + mg θ = 0

mẍ + mg x
l  

= 0

≈ mg x
l

mg sin θ ≈ mg θ

c

l
θ

Aρlẍ + 2Aρg x = 0

ω2 = 2g/l

lθ̈ + cθ = 0

ω2 = c
l

ω2 = 2 T

mẍ + 2T x
l  

= 0

l m

m

T T
x

2 l

x

2x
x

A

ρ

V A

p

l

x

ρAlẍ + = 0
v

γ pxA2

lρv
γ pAω2 =

Figure 1.1 Simple harmonic oscillators with their equations of motion and angular frequenciesω of oscillation. (a)
A mass on a frictionless plane connected by a spring to a wall. (b) A simple pendulum. (c) A torsional pendulum.
(d) A mass at the centre of a string under constant tension T. (e) A fixed length of non-viscous liquid in a U-tube
of constant cross-section. (f) An acoustic Helmholtz resonator.
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4 Introduction to Vibrations and Waves

ρ

A

x

m

(g) (h)

L

q

c

mẍ + Aρgx = 0

ω2 = A ρg/m

Lq̈ + = 0

1

q
c

LC
ω2 =

Figure 1.1 (Continued) (g) A hydrometer mass m in a liquid of density ρ. (h) An electrical L C resonant circuit.

Here T is a time, or period of oscillation, the reciprocal of ν which is the frequency with which the
system oscillates.

However, when we solve the equation of motion we shall find that the behaviour of x with time has
a sinusoidal or cosinusoidal dependence, and it will prove more appropriate to consider, not ν, but the
angular frequency ω = 2πν so that the period

T =
1
ν
= 2π

√
m
s

where s/m is now written as ω2. Thus the equation of simple harmonic motion

ẍ +
s
m

x = 0

becomes

ẍ + ω2x = 0 (1.1)

1.1 Displacement in Simple Harmonic Motion

The behaviour of a simple harmonic oscillator is expressed in terms of its displacement x from
equilibrium, its velocity ẋ, and its acceleration ẍ at any given time. If we try the solution

x = A cosωt
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Simple Harmonic Motion 5

where A is a constant with the same dimensions as x, we shall find that it satisfies the equation of motion

ẍ + ω2x = 0

for

ẋ = −Aω sinωt

and

ẍ = −Aω2 cosωt = −ω2x

Another solution

x = B sinωt

is equally valid, where B has the same dimensions as A, for then

ẋ = Bω cosωt

and

ẍ = −Bω2 sinωt = −ω2x

The complete or general solution of equation (1.1) is given by the addition or superposition of both
values for x so we have

x = A cosωt + B sinωt (1.2)

with

ẍ = −ω2 (A cosωt + B sinωt) = −ω2x

where A and B are determined by the values of x and ẋ at a specified time. If we rewrite the constants as

A = a sinφ and B = a cosφ

where φ is a constant angle, then

A2 + B2 = a2(sin2 φ+ cos2 φ) = a2

so that

a =
√

A2 + B2
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6 Introduction to Vibrations and Waves

and

x = a sinφ cosωt + a cosφ sinωt

= a sin(ωt + φ)

The maximum value of sin(ωt + φ) is unity so the constant a is the maximum value of x, known as
the amplitude of displacement. The limiting values of sin(ωt + φ) are ±1 so the system will oscillate
between the values of x = ±a and we shall see that the magnitude of a is determined by the total energy
of the oscillator.

The angle φ is called the ‘phase constant’ for the following reason. Simple harmonic motion is often
introduced by reference to ‘circular motion’ because each possible value of the displacement x can be
represented by the projection of a radius vector of constant length a on the diameter of the circle traced
by the tip of the vector as it rotates in a positive anticlockwise direction with a constant angular velocity
ω. Each rotation, as the radius vector sweeps through a phase angle of 2π rad, therefore corresponds to
a complete vibration of the oscillator. In the solution

x = a sin(ωt + φ)

the phase constant φ, measured in radians, defines the position in the cycle of oscillation at the time
t = 0, so that the position in the cycle from which the oscillator started to move is

x = a sinφ

The solution

x = a sinωt

defines the displacement only of that system which starts from the origin x = 0 at time t = 0 but the
inclusion of φ in the solution

x = a sin(ωt + φ)

where φ may take all values between zero and 2π allows the motion to be defined from any starting point
in the cycle. This is illustrated in Figure 1.2 for various values of φ.

ωt

x = a sin(ωt + ϕ)
ϕ1

ϕ2

ϕ3

ϕ4
ϕ5

ϕ6

ϕ3

ϕ4

ϕ1

ϕ6

a

a

ϕ2 = 90o

ϕ0 = 0

ϕ5 = 270o

Figure 1.2 Sinusoidal displacement of simple harmonic oscillator with time, showing variation of starting point
in cycle in terms of phase angle φ.
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Simple Harmonic Motion 7

Worked Examples

Show that x = A cosωt + B sinωt may be written as x = a (cosωt + φ).

x = a (cosωt + φ) = a cosωt cosφ− a sinωt sinφ
∴ A = a cosφ and B = −a sinφ

The pendulum in Figure 1.1(b) swings with a displacement amplitude a. If its starting point from rest is
(a) x = a, (b) x = −a, what are the values of φ in the solution x = a sin(ωt + φ)?

x = a sin(ωt + φ) = a at t = 0 requires φ = π
2

x = a sin(ωt + φ) = −a at t = 0 requires φ = −π
2

If x = a at t = 0 with φ = π
2 , at what values of ωt will x = a√

2
, a

2 and x = 0?

Answers: ωt = π
4 , ωt = π

3 , ωt = π
2 .

1.2 Velocity and Acceleration in Simple Harmonic Motion

The values of the velocity and acceleration in simple harmonic motion for

x = a sin(ωt + φ)

are given by

dx
dt

= ẋ = aω cos(ωt + φ)

and

d2x
dt2

= ẍ = −aω2 sin(ωt + φ)

The maximum value of the velocity aω is called the velocity amplitude and the acceleration amplitude
is given by aω2.

From Figure 1.2 we see that a positive phase angle of π/2 rad converts a sine into a cosine curve. Thus
the velocity

ẋ = aω cos(ωt + φ)

leads the displacement

x = a sin(ωt + φ)

by a phase angle of π/2 rad and its maxima and minima are always a quarter of a cycle ahead of those
of the displacement; the velocity is a maximum when the displacement is zero and is zero at maximum
displacement. The acceleration is ‘anti-phase’ (π rad) with respect to the displacement, being maxi-
mum positive when the displacement is maximum negative and vice versa. These features are shown in
Figure 1.3.

Often, the relative displacement or motion between two oscillators having the same frequency and
amplitude may be considered in terms of their phase difference φ1 − φ2 which can have any value
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8 Introduction to Vibrations and Waves

x = a sin(ωt + ϕ)

ẍ = –aω2  sin(ωt + ϕ)

ẋ = aω cos(ωt + ϕ)

ωt

ωt

ωt

a

aω2

aω
A

cc
el

er
at

io
n 

ẍ
V

el
oc

ity
 ẋ

D
is

pl
ac

em
en

t x

Figure 1.3 Variation with time of displacement, velocity and acceleration in simple harmonic motion. Displace-
ment lags velocity by π/2 rad and is π rad out of phase with the acceleration. The initial phase constant φ is taken
as zero.

because one system may have started several cycles before the other and each complete cycle of vibration
represents a change in the phase angle of φ = 2π. When the motions of the two systems are diametrically
opposed; that is, one has x = +a whilst the other is at x = −a, the systems are ‘anti-phase’ and the total
phase difference

φ1 − φ2 = nπ rad

where n is an odd integer. Identical systems ‘in phase’ have

φ1 − φ2 = 2nπ rad

where n is any integer. They have exactly equal values of displacement, velocity and acceleration at any
instant.

1.2.1 Non-linearity

If the stiffness s is constant, then the restoring force F = −sx, when plotted versus x, will produce a
straight line and the system is said to be linear. The displacement of a linear simple harmonic motion
system follows a sine or cosine behaviour. Non-linearity results when the stiffness s is not constant but
varies with displacement x (see the beginning of Chapter 14).

1.3 Energy of a Simple Harmonic Oscillator

The fact that the velocity is zero at maximum displacement in simple harmonic motion and is a maximum
at zero displacement illustrates the important concept of an exchange between kinetic and potential
energy. In an ideal case the total energy remains constant but this is never realized in practice. If no energy
is dissipated then all the potential energy becomes kinetic energy and vice versa, so that the values of
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Simple Harmonic Motion 9

(a) the total energy at any time, (b) the maximum potential energy and (c) the maximum kinetic energy
will all be equal; that is

Etotal = KE+ PE = KEmax = PEmax

The solution x = a sin(ωt + φ) implies that the total energy remains constant because the amplitude of
displacement x = ±a is regained every half cycle at the position of maximum potential energy; when
energy is lost the amplitude gradually decays as we shall see later in Chapter 2. The potential energy is
found by summing all the small elements of work sx · dx (force sx times distance dx) done by the system
against the restoring force over the range zero to x where x = 0 gives zero potential energy.

Thus the potential energy =

x∫
0

sx · dx =
1
2

sx2

The kinetic energy is given by 1
2 mẋ2 so that the total energy

E =
1
2

mẋ2 +
1
2

sx2

Since E is constant we have

dE
dt

= (mẍ + sx)ẋ = 0

giving again the equation of motion

mẍ + sx = 0

Worked Example

In Figure 1.1(g) the energy equation is

E =
1
2

mẋ2 + Aρgx2

dE
dt

= (mẍ + 2Aρgx)ẋ = 0

mẍ + sx = 0

with

s = 2Aρg

ω2 =
2Aρg

m
=

2g
l

The maximum potential energy occurs at x = ±a and is therefore

PEmax =
1
2

sa2
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10 Introduction to Vibrations and Waves

The maximum kinetic energy is

KEmax =

(
1
2

mẋ2

)
max

=
1
2

ma2ω2
[
cos2(ωt + φ)

]
max

=
1
2
ma2ω2

when the cosine factor is unity.
But mω2 = s so the maximum values of the potential and kinetic energies are equal, showing that the

energy exchange is complete.
The total energy at any instant of time or value of x is

E =
1
2

mẋ2 +
1
2

sx2

=
1
2

ma2ω2
[
cos2 (ωt + φ) + sin2 (ωt + φ)

]

=
1
2
ma2ω2

=
1
2
sa2

as we should expect.
Figure 1.4 shows the distribution of energy versus displacement for simple harmonic motion. Note

that the potential energy curve

Total energy E = KE + PE

E
ne

rg
y

Displacement

E

–a +a

= E –
  

   sx2

KE = mẋ2

x

2
E

2
1

2
a

2
a–

PE = sx2

2
1

2
E

2
1

Figure 1.4 Parabolic representation of potential energy and kinetic energy of simple harmonic motion versus
displacement. Inversion of one curve with respect to the other shows a 90o phase difference. At any displacement
value the sum of the ordinates of the curves equals the total constant energy E.
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Simple Harmonic Motion 11

PE =
1
2

sx2 =
1
2

ma2ω2 sin2(ωt + φ)

is parabolic with respect to x and is symmetric about x = 0, so that energy is stored in the oscillator both
when x is positive and when it is negative, e.g. a spring stores energy whether compressed or extended,
as does a gas in compression or rarefaction. The kinetic energy curve

KE =
1
2

mẋ2 =
1
2
ma2ω2 cos2(ωt + φ)

is parabolic with respect to both x and ẋ. The inversion of one curve with respect to the other displays the
π/2 phase difference between the displacement (related to the potential energy) and the velocity (related
to the kinetic energy).

For any value of the displacement x the sum of the ordinates of both curves equals the total constant
energy E.

Worked Example

A particle oscillates with simple harmonic motion along the x axis with a displacement amplitude a and
spends a time dt in moving from x to x+ dx. Show that the probability of finding it between x and x+ dx
is given by

dx

π(a2 − x2)
1
2

Let

x = a sin(ωt + φ)

then

dt =
dx
v

where

v = ẋ = aω(cosωt + φ)

Particle is at same dx twice per oscillation.
∴

probability = η =
2dt
T

where

T = period =
2π
ω
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12 Introduction to Vibrations and Waves

∴

η =
2dt
T

=
2ωdx

2πaω(cosωt + φ)

=
dx

πa cos(ωt + φ)

=
dx

πa(1 − sin2(ωt + φ))
1
2

=
dx

π(a2 − x2)
1
2

1.4 Simple Harmonic Oscillations in an Electrical System

So far we have discussed the simple harmonic motion of the mechanical and fluid systems of Figure
1.1, chiefly in terms of the inertial mass stretching the weightless spring of stiffness s. The stiffness s
of a spring defines the difficulty of stretching; the reciprocal of the stiffness, the compliance C (where
s = 1/C) defines the ease with which the spring is stretched and potential energy stored. This notation
of compliance C is useful when discussing the simple harmonic oscillations of the electrical circuit of
Figure 1.1(h) and Figure 1.5, where an inductance L is connected across the plates of a capacitance C.
The force equation of the mechanical and fluid examples now becomes the voltage equation (balance of
voltages) of the electrical circuit, but the form and solution of the equations and the oscillatory behaviour
of the systems are identical.

In the absence of resistance the energy of the electrical system remains constant and is exchanged
between the magnetic field energy stored in the inductance and the electric field energy stored between
the plates of the capacitance. At any instant, the voltage across the inductance is

V = −L
dI
dt

= −L
d2q
dt2

where I is the current flowing and q is the charge on the capacitor, the negative sign showing that the
voltage opposes the increase of current. This equals the voltage q/C across the capacitance so that

Lq̈ + q/C = 0 (Kirchhoff’s Law)

l 
q
c

q
c

+

+

–

–

Lq̇ + = 0

dl
dt

L

Figure 1.5 Electrical system which oscillates simple harmonically. The sum of the voltages around the circuit is
given by Kirchhoff’s law as L dI/dt + q/C = 0.
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Simple Harmonic Motion 13

or

q̈ + ω2q = 0

where

ω2 =
1

LC

The circuit in Figure 1.5 is very useful in producing oscillators with fixed frequencies in the range 30
Hz (low frequency acoustic) to 50 MHz (high frequency stereo). e.g. L = 1μH and C = 25pF oscillates
at a frequency of 31.26 MHz.

The energy stored in the magnetic field or inductive part of the circuit throughout the cycle, as the
current increases from 0 to I, is formed by integrating the power at any instant with respect to time;
that is

EL =

∫
VI · dt

(where V is the magnitude of the voltage across the inductance).
So

EL =

∫
VIdt =

∫
L
dI
dt

I dt =

I∫
0

LIdI

=
1
2

LI2 =
1
2

Lq̇2

The potential energy stored mechanically by the spring is now stored electrostatically by the capacitance
and equals

1
2

CV2 =
q2

2C

Comparison between the equations for the mechanical and electrical oscillators

mechanical (force) → mẍ + sx = 0

electrical (voltage) → Lq̈ +
q
C

= 0

mechanical (energy) → 1
2

mẋ2 +
1
2

sx2 = E

electrical (energy) → 1
2

Lq̇2 +
1
2

q2

C
= E

shows that magnetic field inertia (defined by the inductance L) controls the rate of change of current for
a given voltage in a circuit in exactly the same way as the inertial mass controls the change of velocity
for a given force. Magnetic inertial or inductive behaviour arises from the tendency of the magnetic
flux threading a circuit to remain constant and reaction to any change in its value generates a voltage
and hence a current which flows to oppose the change of flux. This is the physical basis of Fleming’s
right-hand rule.
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14 Introduction to Vibrations and Waves

1.5 Superposition of Two Simple Harmonic Vibrations in One Dimension

(1) Vibrations Having Equal Frequencies

In the following chapters we shall meet physical situations which involve the superposition of two or
more simple harmonic vibrations on the same system.

We have already seen how the displacement in simple harmonic motion may be represented in magni-
tude and phase by a constant length vector rotating in the positive (anticlockwise) sense with a constant
angular velocity ω. To find the resulting motion of a system which moves in the x direction under the
simultaneous effect of two simple harmonic oscillations of equal angular frequencies but of different
amplitudes and phases, we can represent each simple harmonic motion by its appropriate vector and
carry out a vector addition.

If the displacement of the first motion is given by

x1 = a1 cos (ωt + φ1)

and that of the second by

x2 = a2 cos (ωt + φ2)

then Figure 1.6 shows that the resulting displacement amplitude R is given by

R2 = (a1 + a2 cos δ)
2 + (a2 sin δ)

2

= a2
1 + a2

2 + 2a1a2 cos δ

where δ = φ2 − φ1 is constant.
The phase constant θ of R is given by

tan θ =
a1 sinφ1 + a2 sinφ2

a1 cosφ1 + a2 cosφ2

so the resulting simple harmonic motion has a displacement

x = R cos(ωt + θ)

an oscillation of the same frequency ω but having an amplitude R and a phase constant θ.

a2 sin δ
a2

a2 cos δϕ2

R
y

x

ϕ2 – ϕ1 = δ
a2

a1

ϕ1
θ

Figure 1.6 Addition of vectors, each representing simple harmonic motion along the x axis at angular frequency
ω to give a resulting simple harmonic motion displacement x = R cos(ωt + θ)− here shown for t = 0.
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Simple Harmonic Motion 15

Worked Example

If a1 = a2 = a in Figure 1.6, show that R2 = 4a2 cos2 δ
2 .

R2 = 2a2 + 2a2 cos δ = 2a2 + 2a2

(
2cos2 δ

2
− 1

)
= 4a2 cos2 δ

2

(2) Vibrations Having Different Frequencies

Suppose we now consider what happens when two vibrations of equal amplitudes but different
frequencies are superposed. If we express them as

x1 = a sinω1t

and

x2 = a sinω2t

where

ω2 > ω1

then the resulting displacement is given by

x = x1 + x2 = a(sinω1t + sinω2t)

= 2a sin
(ω1 + ω2)t

2
cos

(ω2 − ω1)t
2

This expression is illustrated in Figure 1.7. It represents a sinusoidal oscillation at the average frequency
(ω1 + ω2)/2 having a displacement amplitude of 2a which modulates; that is, varies between 2a and

x
2a

2a

ωt

sin t
ω2 + ω1

2

cos t
ω2 – ω1

2

Figure 1.7 Superposition of two simple harmonic displacements x1 = a sinω1t and x2 = a sinω2t when ω2 > ω1.
The slow cos[(ω2 − ω1)/2]t envelope modulates the sin [(ω2 + ω1)/2]t curve between the values x = ±2a.
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16 Introduction to Vibrations and Waves

zero under the influence of the cosine term of a much slower frequency equal to half the difference
(ω2 − ω1)/2 between the original frequencies.

When ω1 and ω2 are almost equal the sine term has a frequency very close to both ω1 and ω2 whilst
the cosine envelope modulates the amplitude 2a at a frequency (ω2 − ω1)/2 which is very slow.

Acoustically this growth and decay of the amplitude is registered as ‘beats’ of strong reinforcement
when two sounds of almost equal frequency are heard. The frequency of the ‘beats’ is (ω2 − ω1), the
difference between the separate frequencies (not half the difference) because the maximum amplitude
of 2a occurs twice in every period associated with the frequency (ω2 − ω1)/2. We shall meet this situ-
ation again when we consider the coupling of two oscillators in Chapter 4 and the wave group of two
components in Chapter 6.

Problem 1.1. The equation of motion

mẍ = −sx with ω2 =
s
m

applies directly to the system in Figure 1.1(a).
If the pendulum bob of Figure 1.1(b) is displaced a small distance x show that the stiffness (restoring

force per unit distance) is mg/l and that ω2 = g/l where g is the acceleration due to gravity. Now use
the small angular displacement θ instead of x and show that ω is the same.

In Figure 1.1(c) the angular oscillations are rotational so the mass is replaced by the moment of inertia I
of the disc and the stiffness by the restoring couple of the wire which is C rad−1 of angular displacement.
Show that ω2 = C/I.

In Figure 1.1(d) show that the stiffness is 2T/l and that ω2 = 2T/lm.
In Figure 1.1(e) show that the stiffness of the system is 2ρAg, where A is the area of cross section and

that ω2 = 2g/l where g is the acceleration due to gravity.
In Figure 1.1(f) only the gas in the flask neck oscillates, behaving as a piston of mass ρAl. If the

pressure changes are calculated from the equation of state use the adiabatic relation pVγ = constant and
take logarithms to show that the pressure change in the flask is

dp = −γp
dV
V

= −γp
Ax
V
,

where x is the gas displacement in the neck. Hence show that ω2 = γpA/lρV . Note that γp is the stiffness
of a gas (see Chapter 7).

In Figure 1.1(g), if the cross-sectional area of the neck is A and the hydrometer is a distance x above
its normal floating level, the restoring force depends on the volume of liquid displaced (Archimedes’
principle). Show that ω2 = gρA/m.

Check the dimensions of ω2 for each case.

Problem 1.2. Show by the choice of appropriate values for A and B in equation (1.2) that equally valid
solutions for x are

x = a cos(ωt + φ)

x = a sin(ωt − φ)

x = a cos(ωt − φ)
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Simple Harmonic Motion 17

and check that these solutions satisfy the equation

ẍ + ω2x = 0

Problem 1.3. The pendulum in Figure 1.1(a) swings with a displacement amplitude a. If its starting
point from rest is

(a) x = a

(b) x = −a

find the different values of the phase constant φ for the solutions

x = a sin(ωt + φ)

x = a cos(ωt + φ)

x = a sin(ωt − φ)

x = a cos(ωt − φ)

For each of the different values of φ, find the values of ωt at which the pendulum swings through the
positions

x = +a/
√

2

x = a/2

and

x = 0

for the first time after release from

x = ±a

Problem 1.4. When the electron in a hydrogen atom bound to the nucleus moves a small distance from
its equilibrium position, a restoring force per unit distance is given by

s = e2/4πε0r3

where r = 0.05 nm may be taken as the radius of the atom. Show that the electron can oscillate with a
simple harmonic motion with

ω0 ≈ 4.5 × 1016rad s−1

If the electron is forced to vibrate at this frequency, in which region of the electromagnetic spectrum
would its radiation be found?

e = 1.6 × 10−19C, electron mass me = 9.1 × 10−31kg

ε0 = 8.85 × 10−12N−1m−2C2



�

�

“Pain-Driver” — 2014/12/30 — 11:10 — page 18 — #18
�

�

�

�

�

�

18 Introduction to Vibrations and Waves

Problem 1.5. Show that the values of ω2 for the three simple harmonic oscillations (a), (b), (c) in the
diagram are in the ratio 1: 2: 4.

m

m m

s

s

s

(b) (c)(a)

s s

Problem 1.6. The displacement of a simple harmonic oscillator is given by

x = a sin(ωt + φ)

If the oscillation started at time t = 0 from a position x0 with a velocity ẋ = v0 show that

tanφ = ωx0/v0

and

a =
(
x2

0 + v2
0/ω

2
)1/2

Problem 1.7. Following the 2nd worked example in section 1.3 Energy of a Simple Harmonic Oscillator,
show that if the charge on the capacitor of Figure 1.5 is given by q = q0 cosωt the probability of q having
a value between q and q + dq is

η =
1
π

dq(
q2

0 − q2
) 1

2

Use this to write down the equation for the probability of the current in the inductance L to lie between
I and I + dI where I = q̇.

Problem 1.8. Many identical simple harmonic oscillators are equally spaced along the x axis of a
medium and a photograph shows that the locus of their displacements in the y direction is a sine curve.
If the distance λ separates oscillators which differ in phase by 2π radians, what is the phase difference
between two oscillators a distance x apart?

Problem 1.9. A mass stands on a platform which vibrates simple harmonically in a vertical direction at
a frequency of 5 Hz. Show that the mass loses contact with the platform when the displacement exceeds
10−2 m.

Problem 1.10. A mass M is suspended at the end of a spring of length 1 and stiffness s. If the mass of
the spring is m and the velocity of an element dy of its length is proportional to its distance y from the
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Simple Harmonic Motion 19

fixed end of the spring, show that the kinetic energy of this element is

1
2

(m
l
dy
)(y

l
v
)2

where v is the velocity of the suspended mass M. Hence, by integrating y2dy over the length of the spring,
show that its total kinetic energy is 1

6 mv2 and, from the total energy of the oscillating system, show that
the frequency of oscillation is given by

ω2 =
s

M + m/3

Problem 1.11. The general form for the energy of a simple harmonic oscillator is

E =
1
2

mass (velocity)2 +
1
2

stiffness (displacement)2

Set up the energy equations for the oscillators in Figure 1.1(a), (b), (c), (d), (e), (f) and (g), and use the
expression

dE
dt

= 0

to derive the equation of motion in each case.

Problem 1.12. The displacement of a simple harmonic oscillator is given by x = a sinωt. If the values
of the displacement x and the velocity ẋ are plotted on perpendicular axes, eliminate t to show that the
locus of the points (x, ẋ) is a circle. Show that this circle represents a path of constant energy.

Problem 1.13. In Chapter 12 the intensity of the pattern when light from two slits interfere (Young’s
experiment) will be seen to depend on the superposition of two simple harmonic oscillations of equal
amplitude a and phase difference δ. Show that the intensity

I = R2 ∝ 4a2 cos2 δ/2

Between what values does the intensity vary?

Problem 1.14. The electrical circuit of Figure 1.5 has L = 250 mH and C = 100 μF. Show that it
oscillates with a frequency ν ≈ 31.2 Hz (the low end of human acoustic range). If L = 25 μH and
C = 4 μF, show that ν = 16 kHz (the top end of the human acoustic range).

Problem 1.15. The equation for an ellipse is

x2

a2
+

y2

b2
= 1

where a is the horizontal semi axis and b is the vertical semi axis. The coordinates of the displacement
of a particle of mass m are given by

x = a sinωt

y = b cosωt
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20 Introduction to Vibrations and Waves

Eliminate t to show that the particle follows an elliptical path and show by adding its kinetic and potential
energy at any position x, y that the ellipse is a path of constant energy equal to the sum of the separate
energies of the simple harmonic vibrations.

Prove that the quantity m(xẏ − yẋ) is also constant. This quantity represents the angular momentum
which changes sign when the motion reverses its direction.

Problem 1.16. If, in Figure 1.7, ω1 ≈ ω2 = ω and ω1 − ω2 = Δω, show that the number of rapid
oscillations between two consecutive zeros of the slow frequency envelope is ω

Δω .
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Damped Simple Harmonic Motion

Introduction

The introduction to this book states that the behaviour of any oscillator is governed by three parameters,
two of which store and exchange energy while the third parameter causes energy loss. The first chapter
dealt with the two energy storing parameters. The energy of simple harmonic motion is constant. This
chapter introduces the third parameter which dissipates the energy and changes the behaviour of the
simple harmonic oscillator. One of the changes is the decay of the oscillations - a decay which is known
as exponential.

Where the force s is a force per unit distance the resistive dissipating force r is a force per unit velocity
which acts to oppose the direction of motion. The rate at which the energy decays is determined by the
relative strength of two forces r and s. There are three regions of relative strength:

(1) r/2 is greater than s – which is non oscillatory.
(2) r/2 is equal to s – which is non oscillatory.
(3) r/2 is less than s – which is oscillatory.

The region r/2 is greater than s is of least interest to us. It is called ‘dead beat’.
The region r/2 is equal to s is important because it explains the behaviour of all shock absorbers. It is

known as critical damping and describes the response of a system initially at rest which is subject to a
sudden jolt and is required to return to equilibrium in the minimum possible time.

Region 3, r/2 is less than s, is where the amplitude of the oscillator is gradually reduced as energy
is lost due to the action of r. Two particular methods which describe this damping are the logarithmic
decrement and the Q value of the system.

This chapter requires two mathematical techniques with which you may not be familiar. These are:

(a) the use of i equals the square root of minus one, and
(b) the exponential series which describes the laws of natural growth (compound interest) and decay

(damped oscillations).

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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22 Introduction to Vibrations and Waves

The formal derivations of the Binomial Theorem, the exponential series and Taylor’s series appear at
the end of the book, in Appendices 1 and 2, but a working plan of six points is presented here which
covers all the aspects of the exponential series which you will meet in this book. They are numbered and
are referred to in the text where appropriate. They are offered as immediate help in this chapter and for
reference in later use. Ask your tutor for help (or discuss in a study group) if you have any difficulty in
following the examples and look out for applications in the text.

2.1 Complex Numbers

The algebra of complex numbers is straightforward. A complex number has two parts, one real and one
imaginary. It is written z = a + ib where a is real and ib is imaginary because i =

√
−1.

(i) If z1 = a + ib and z2 = c + id and z1 = z2 then a = c and b = d (real parts are equal and
imaginary parts are equal.)

(ii) z1 + z2 = (a + c) + i(b + d)
(iii) z1 × z2 = (a + ib)(c + id) = (ac − bd) + i(ad + bc) for i2 = −1
(iv) z∗ is the complex conjugate of z which changes i to −i so z∗1 = a − ib is the complex conjugate

of z1 = a + ib
(v) |z1| is the magnitude of

√
z1z∗1 = [(a + ib)(a − ib)]

1
2 = (a2 + b2)

1
2

(vi)

z1

z2
=

z1z∗2
z2z∗2

=
(a + ib)(c − id)
(c + id)(c − id)

=
(ac + bd) + i(bc − ad)

c2 + d2

(vii) If b > a then
√

a − b is imaginary, written
√
i2a − i2b = ±i

√
b − a (this is used in the section

on damped oscillations).

2.2 The Exponential Series

(1) The exponential series is written

ex = 1 + x +
x2

2!
+

x3

3!
− · · · xn

n!
where n → ∞ and

n! (called n factorial) = 1 · 2 · 3 · 4 · · · n.

Both ex and e−x are shown in Figure 2.1, respectively as growth and decay processes. Note that ex and
e−x equal 1 for x = 0.

dex

dx
= 1 + x +

x2

2!
+

x3

3!
· · · = ex

so the function equals its gradient at x.

d2ex

dx
= 1 + x +

x2

2!
+

x3

3!
· · · = ex
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Damped Simple Harmonic Motion 23

y = e–x
y = exy

0
x

1

Figure 2.1 The behaviour of the exponential series y = ex and y = e−x.

(2) When x = 1

ex = e = 1 + 1 +
1
2!

+
1
3!

+
1
4!

+ · · ·

which is the base of natural logarithms.
Logarithms are first met with a base 10. The logarithm of a number is the power to which the base

must be raised in order to equal the given number. Thus

log10100 = 2 log1010 = 1 log101 = 0

(log1 to any base is zero.)

2.2.1 The Exponential Series and the Law of Compound Interest

The law of compound interest may be written as (1+1/n)n where the bracket (1+1/n) is multiplied by
itself n times. Within the bracket the digit one represents the unit of currency being saved, a dollar, pound
sterling or euro, and the term 1/n represents the fraction of that unit pound as interest. As a percentage
of interest we write 100/n%. There are n payments of interest (the index outside the bracket) and each
time interest is paid the savings increase by a factor (1 + 1/n).

We consider three rates of interest to observe the growth of capital. If n = 20 the rate of interest is
100/20 = 5% and after 20 payments of interest the capital has grown by a factor of 2.63. If n = 40 the
rate of interest is 100/40 = 2 1

2% and after 40 payments of interest the capital has grown by a factor of
2.685. If n = 100 the rate of interest is 100/100 = 1% and after 100 payments the capital has grown by
2.705. In the limit as n → ∞ as 1/n → 0 we have

lim
n→∞

(
1 +

1
n

)n

= 2.718 = e
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24 Introduction to Vibrations and Waves

the base of natural logarithms, which describes the infinitesimal growth (or decay with a negative sign) of
natural systems. Finally we note that [(1+1/n)n]2 = e·e = e2 : (for n → ∞) [(1+1/n)n]3 = e·e·e = e3

and [(1 + 1/n)n]x = ex = 1 + x + x2/2! + x3/3! · · ·

(3) e±αx

Often we shall meet expressions such as e±αx where α is real. The index αx is a power of the base and is
a pure number, so α has the dimensions of 1/x which often gives us a great deal of physical information.
(See for example note 6 on Relaxation Time.)

eαx = 1 + αx +
α2x2

2!
+

α3x3

3!
+ · · ·

deαx

dx
= α+

2α2

2!
x +

3α3

3!
x2 = α

(
1 + αx +

α2

2!
x2 +

α3

3!
x3

)
= αeαx

Similarly
d2eαx

dx
= α2eαx

(4) eix

In this case the index is imaginary and yields a great deal of information.

eix = 1 + ix +
i2x2

2!
+

i3x3

3!
+

i4x4

4!
+ · · · = 1 + ix − x2

2!
− ix3

3!
+

x4

4!
+ · · ·

= 1 − x2

2!
+

x4

4!
+ · · ·+ i

(
x − x3

3!
− x5

5!
+ · · ·

)

= cosx + isinx

cosx = (eix + e−ix)/2 and sinx = (eix − e−ix)/2i

We see also that

d

dx
eix = ieix = icosx − sinx

Often we shall represent a sine or cosine oscillation in the form eix and recover the original form by
taking that part of the solution preceded by i in the case of the sine and the real part of the solution when
the oscillation is that of a cosine.

Let us consider the expression eiωt and try x = aeiωt = a(cosωt + isinωt) as a solution to the simple
harmonic motion where a is a constant length (the amplitude) and ω is the constant angular frequency.

dx
dt

= ẋ = iωaeiωt = iωx

d2x
dt2

= ẍ = i2ω2aeiωt = −ω2x

∴ ẍ + ω2x = 0

and x = a(cosωt + isinωt) is a complete solution of the simple harmonic motion equation.
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Damped Simple Harmonic Motion 25

(5)
∫

dy
y = logey + constant

If y = ex then x = logey and

dy
dx

= logey =
1
dx
dy

= ex = y

∴ dx =
dy
y

and
∫

dx =

∫
dy
y

= logey + constant

This results in the Differential Form of the Exponential Series

Putting
dy
y

=
dN
N

= ±αdx

where α is a real constant and dN
N is a constant fraction of growth or decay with x (or t).

we have

N∫
N0

dN
N

= ±α

∫
dx ∴ logeN − logeN0 = ±αx

∴ N = N0e
±αx

where N = N0 is the original value of N at x = 0.

(6) e−1 Relaxation Time

Theoretically the time for an exponential to decay to zero is infinite. The convention for comparison is to
choose the time, known as the relaxation time, for the system to decay to e−1, that is 1/e, of its original
value.

Example

A capacitor C discharges q through a resistance R. The voltage equation around the circuit is given

IR + q/C = 0 where I = dq/dt

∴ R
dq
dt

=
−q
C

∴ dq
q

= − dt
RC

and

q∫
q0

dq
q

= −
t∫

t0

dt
RC

giving q = q0e
−t/RC where q0 is the original charge on C.

At t = RC, q = q0e
−1 so the relaxation time is t = RC. Check that RC has the dimensions of time t.

2.2.2 Note on the Binomial Theorem

The expansion of (1 + 1/n)n used in deriving the exponential e is close to that of the binomial series
which is explained in detail in Appendix 1, showing the connection.
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26 Introduction to Vibrations and Waves

For our purpose here the binomial series is written (1 + x)n where −1 < x < 1 and x can be integral
or a fraction. Expanding this expression, we have

(1 + x)n = 1 + nx +
n(n − 1)x2

2!
+

n(n − 1)(n − 2)x3

3!
e.g. (1 + x)2 = 1 + 2x + x2 ≈ 1 + 2x neglecting x2

which is a very small error when |x| < 1.
It is a very common practice to take the first two terms of the expansion as an approximation – the

error being of the order of the first term which is dropped.
The square root form (1 + x)1/2 is often written 1 + 1

2 x. This will be used and pointed out in the text.
Initially we discussed the case of ideal simple harmonic motion where the total energy remained constant
and the displacement followed a sine curve, apparently for an infinite time. In practice some energy is
always dissipated by a resistive or viscous process; for example, the amplitude of a freely swinging
pendulum will always decay with time as energy is lost. The presence of resistance to motion means that
another force is active, which is taken as being proportional to the velocity. The frictional force acts in
the direction opposite to that of the velocity (see Figure 2.2) and so applying Newton’s Second Law, the
equation of motion, becomes

mẍ = −sx − rẋ

where r is the constant of proportionality and has the dimensions of force per unit of velocity. The
presence of such a term will always result in energy loss.

The problem now is to find the behaviour of the displacement x from the equation

mẍ + rẋ + sx = 0 (2.1)

where the coefficients m, r and s are constant.
When these coefficients are constant a solution of the form x = C eαt can always be found. Since

an exponential term is always nondimensional, C has the dimensions of x (a length, say) and α has the
dimensions of inverse time, T−1. We shall see that there are three possible forms of this solution, each

s

Frictional
force F = –rẋ

ẋ

m

Figure 2.2 Simple harmonic motion system with a damping or frictional force rẋ acting against the direction of
motion. The equation of motion is mẍ + rẋ + sx = 0.
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Damped Simple Harmonic Motion 27

describing a different behaviour of the displacement x with time. In the first of these solutions C appears
explicitly as a constant length, but in the second and third cases it takes the form

C = A + Bt ∗

where A is a length, B is a velocity and t is time, giving C the overall dimensions of a length, as we
expect. From our point of view the first case is not the most important.

Taking C as a constant length gives ẋ = αC eαt and ẍ = α2C eαt, so that equation (2.1) may be
rewritten

C eαt(mα2 + rα+ s) = 0

so that either

x = C eαt = 0 (which is trivial)

or

mα2 + rα+ s = 0

Solving the quadratic equation in α gives

α =
−r
2m

±
√

r2

4m2
− s

m
where

s
m

= ω2
0

Note that r/2m and (ω2
0)

1/2, and therefore, α, all have the dimensions of inverse time, that is a
frequency T−1, which we expect from the form of eαt.

The displacement can now be expressed as

x1 = C1 e
−rt/2m+(r2/4m2−ω2

0)
1/2t, x2 = C2 e

−rt/2m−(r2/4m2−ω2
0)

1/2t

or the sum of both these terms

x = x1 + x2 = C1 e
−rt/2m+(r2/4m2−ω2

0)
1/2t + C2 e

−rt/2m−(r2/4m2−ω2
0)

1/2t (2.2)

The bracket (r2/4m2−ω2
0) can be positive, zero or negative depending on the relative magnitude of the

two terms inside it. Each of these conditions gives one of the three possible solutions referred to earlier
and each solution describes a particular kind of behaviour. We shall discuss these solutions in order of
increasing significance from our point of view; the third solution is the one we shall concentrate upon
throughout the rest of this book.

The conditions are:

(1) Bracket positive (r2/4m2 > ω2
0). Here the damping resistance term r2/4m2 dominates the stiffness

term s/m, and heavy damping results in a dead beat system.

*The number of constants allowed in the general solution of a differential equation is always equal to the order (that is, the highest
differential coefficient) of the equation. The two values A and B are allowed because equation (2.1) is second order. The values of the
constants are adjusted to satisfy the initial conditions.
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28 Introduction to Vibrations and Waves

(2) Bracket zero (r2/4m2 = ω2
0). The balance between the two terms results in a critically damped

system.

Neither (1) nor (2) gives oscillatory behaviour.

(3) Bracket negative (r2/4m2 < ω2
0). The system is lightly damped and gives oscillatory damped

simple harmonic motion.

2.2.3 Region 1. Heavy Damping (r2/4m2 > ω2
0)

We can write equation 2.2 as

C1 e−α1t + C2 e−α2t = 0

where

α1 ≡
[

r
2m

+

(
r2

4m2
− ω2

0

) 1
2
]

and

α2 ≡
[

r
2m

−
(

r2

4m2
− ω2

0

) 1
2
]

α1 and α2 are positive and we see that −α2 with three negative coefficients to t is dominant in terms of
the decay after the system is displaced from equilibrium.

Note that

α1 >
r

2m
> ω0 and α1α2 = ω2

0

so

α2 < ω0

This is an important result when we examine region 2.
When r2/4m2 � ω2

0

α1 ≈ r
m
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and

α2 =
r

2m
− r

2m

(
1 − 4ω2

0m2

r2

) 1
2

≈ r
2m

− r
2m

(
1 − 2ω2

0m2

r2

)

≈ ω2
0m
r

(using the Binomial Theorem with n = 1/2).
In the above C1 and C2 are arbitrary in value but have the same dimensions as C. Two separate values

of C are allowed because the differential equation 2.1 is of second order.
Figure 2.3 illustrates heavily damped behaviour when a system is disturbed from equilibrium by a

sudden impulse (that is, given a velocity at t = 0). It will return to zero displacement quite slowly
without oscillating about its equilibrium position. More advanced mathematics shows that the value of
the velocity dx/dt vanishes only once so that there is only one value of maximum displacement.

Worked Example

A dead beat (heavily damped) system is displaced a distance A from equilibrium and released from rest.
Its subsequent motion is given by

x = A e−ω2
0mt/r

Show by considering the relaxation time that its decay is slowed down by the resistive force r acting
against the stiffness force s.
From

e−ω2
0mt/r

Heavy damping

r increasing

Time

D
is

pl
ac

em
en

t

r2

4m2
s
m

>

Figure 2.3 Non-oscillatory behaviour of damped simple harmonic system with heavy damping (where r2/4m2 >
s/m) after the system has been given an impulse from a rest position x = 0.
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30 Introduction to Vibrations and Waves

we have

t =
r

ω2
0m

=
r
m

m
s
=

r
s

as the relaxation time, so s has to work against r.
(Permission to use eq. 3.15 page 39, eq. 3.17 and 3.18 page 41, I. C. Main, Vibrations and Waves in

Physics (1978) (C. U. P.) is gratefully acknowledged.)

2.2.4 Region 2. Critical Damping (r2/4m2 = ω2
0)

Using the notation of Region 1, we see that r2/4m2 = ω2
0 and that x = e−ω0t(C1 + C2). This is, in

fact, the limiting case of the behaviour of Region 1 as the bracket (r2/4m2 − ω2
0) changes from positive

to negative. In this case the quadratic equation in α has equal roots, which, in a differential equation
solution, demands that C must be written C = A + Bt, where A is a constant length and B a given
velocity which depends on the boundary conditions. We now prove that the value

x = (A + Bt)e−rt/2m = (A + Bt)e−ω0t (2.3)

satisfies mẍ + rẋ + sx = 0 when r2/4m2 = ω2
0.

Worked Example

We write

mẍ + rẋ + sx = 0 = ẍ + 2ω0ẋ + ω2
0x (2.4)

using (r/2m = ω0)
The first term A e−ω0t in equation 2.3 gives A(ω2

0 − 2ω2
0 + ω2

0)e
−ω0t = 0 in equation 2.4. The second

term Bt e−ω0t in equation 2.3 gives, in equation 2.4, three terms

ẍ = B(ω2
0 t − ω0 − ω0) e

−ω0t

+
r
m

ẋ = 2ω0ẋ = 2ω0B(1 − ω0t) e−ω0t and the third term

+
s
m

x = ω2
0x = ω2

0Bt e−ω0t

The sum of these three terms is zero in equation 2.4 proving that (A + Bt) e−ω0t is a solution of
equation 2.4.

Application to a Damped Mechanical Oscillator

Critical damping is of practical importance in mechanical oscillators which experience sudden impulses
and are required to return to zero displacement in the minimum time. Suppose such a system has zero
displacement at t = 0 and receives an impulse which gives it an initial velocity V .

Then x = 0 (so that A = 0) and ẋ = V at t = 0. However,

ẋ = B[(−ω0t)e−ω0t + e−ω0t] = B at t = 0
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Time

Critical
dampingx = 2

 = 

Ve–1

e–1

m

v

r

r
1

t
0

ω0

ω0

Displacement

r2 s=

= =

m

2m

4m2

Figure 2.4 Limiting case of non-oscillatory behaviour of damped simple harmonic system where r2/4m2 = ω2
0

(critical damping).

so that B = V and the complete solution is

x = Vt e−ω0t

The maximum displacement x occurs when the system comes to rest before returning to zero
displacement. At maximum displacement

ẋ = Ve−ω0t(1 − ω0t) = 0

thus giving (1 − ω0t) = 0, i.e. t = 1/ω0.
At this time the displacement is therefore

x = Vt e−ω0t =
V
ω0

e−1

The curve of displacement versus time is shown in Figure 2.5; the return to zero in a critically damped
system is reached in minimum time.

Note that the relaxation time in critical damping is 1/ω0 which is faster than that of 1/α2 in the heavy
damping case. The value of V = 0 at t = 1/ω0 so the resistive force r = 0 and the restoring stiffness
force s is unopposed at a maximum, whereas s is opposed by r in the heavy damping case.

2.2.5 Region 3. Damped Simple Harmonic Motion (r2/4m2 < ω2
0)

When r2/4m2 < ω2
0 the damping is light, and this gives from the present point of view the most important

kind of behaviour, oscillatory damped simple harmonic motion.
The expression (r2/4m2−ω2

0)
1/2 is an imaginary quantity, the square root of a negative number, which

can be rewritten

±
(

r2

4m2
− ω2

0

)1/2

= ±
√
−1

(
ω2

0 −
r2

4m2

)1/2

= ±i

(
ω2

0 −
r2

4m2

)1/2

(where i =
√
−1)
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r t
e

t

–
2m

D
is

pl
ac

em
en

t

r2 s
<

m4m2

τʹ 2τʹ

Figure 2.5 Damped oscillatory motion where s/m > r2/4m2. The amplitude decays with e−rt/2m, and the
reduced angular frequency is given by ω′2 = ω2

0 − r2/4m2.

so the displacement

x = C1 e
−rt/2me+i(ω2

0−r2/4m2)1/2t + C2 e
−rt/2me−i(ω2

0−r2/4m2)1/2t

The graph of this expression is shown in Figure 2.5, a sinωt curve with an amplitude which decays
exponentially as e−rt/2m. To reconcile the graph and its expression note that

(a) The factor e−rt/2m in both the C1 and C2 terms of the expression is the envelope of the decay of the
amplitude in Figure 2.5.

(b) The bracket has the dimensions of inverse time; that is, of frequency, and can be written (ω2
0 −

r2/4m2)1/2 = ω′, so that the second exponential becomes eiω
′t = cosω′t+ i sinω′t. This shows that the

behaviour of the displacement x is oscillatory with a new frequency ω′ < ω = (ω2
0)

1/2, the frequency
of ideal simple harmonic motion. To compare the behaviour of the damped oscillator with the ideal case
we should like to express the solution in a form similar to x = A sin(ω′t + φ) as in the simple harmonic
case, where ω has been replaced by ω′.

We can do this by writing

x = e−rt/2m(C1 e
iω′t + C2 e

−iω′t)

If we now choose

C1 =
A
2i
eiφ

and

C2 = − A
2i
e−iφ

where A and φ (and thus eiφ) are constants which depend on the motion at t = 0, we find after substitution

x = Ae−rt/2m [e
i(ω′t+φ) − e−i(ω′t+φ)]

2i
= Ae−rt/2m sin(ω′t + φ)
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This procedure is equivalent to imposing the boundary condition x = A sinφ at t = 0 upon the solution
for x. The displacement therefore varies sinusoidally with time as in the case of simple harmonic motion,
but now has a new frequency

ω′ =

(
ω2

0 −
r2

4m2

)1/2

and its amplitude A is modified by the exponential term e−rt/2m, a term which decays with time.
If x = 0 at t = 0 then φ = 0; Figure 2.5 shows the behaviour of x with time, its oscillations gradually

decaying with the envelope of maximum amplitudes following the dotted curve e−rt/2m. The constant A
is obviously the value to which the amplitude would have risen at the first maximum if no damping were
present.

The presence of the force term rẋ in the equation of motion therefore introduces a loss of energy which
causes the amplitude of oscillation to decay with time as e−rt/2m.

Worked Example

The amplitude of a vibrating mass of 200 grams decays because of the pressure of a resistive force r.
What value of r will reduce the amplitude A to A e−1 in 5 seconds?

A e−1 = A e
−t

2m/r when 5 =
.4
r

∴ r =
.4
5

= .08 kg s−1

2.3 Methods of Describing the Damping of an Oscillator

Earlier in Chapter 1 we saw that the energy of an oscillator is given by

E =
1
2
ma2ω2 =

1
2

sa2

that is, proportional to the square of its amplitude.
We have just seen that in the presence of a damping force rẋ the amplitude decays with time as

e−rt/2m

so that the energy decay will be proportional to

(e−rt/2m)2

that is, e−rt/m. The larger the value of the damping force r the more rapid the decay of the amplitude and
energy. Thus we can use the exponential factor to express the rates at which the amplitude and energy
are reduced.

2.3.1 Logarithmic Decrement

This measures the rate at which the amplitude dies away. Suppose in the expression

x = Ae−rt/2m sin(ω′t + φ)
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34 Introduction to Vibrations and Waves

we choose

φ = π/2

and we write

x = A0 e
−rt/2m cosω′t

with x = A0 at t = 0. Its behaviour will follow the curve in Figure 2.6.
If the period of oscillation is τ ′ where ω′ = 2π/τ ′, then one period later the amplitude is given by

A1 = A0 e
(−r/2m)τ ′

so that

A0

A1
= erτ ′/2m = eδ

where

δ =
r

2m
τ ′ = loge

A0

A1

is called the logarithmic decrement. (Note that this use of δ differs from that in Figure 1.6.) The loga-
rithmic decrement δ is the logarithm of the ratio of two amplitudes of oscillation which are separated by
one period, the larger amplitude being the numerator since eδ > 1.

r t
e

–
2m

r 
e

0

–
2m

At

τʹ

r 
e

–
2m

(2τʹ)

A2

t

A0

τʹ τʹ

Figure 2.6 The logarithmic ratio of any two amplitudes one period apart is the logarithmic decrement, defined
as δ = loge(An/An+1) = rτ ′/2m.
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Similarly

A0

A2
= er(2τ ′)/2m = e2δ

and

A0

An
= enδ

Experimentally, the value of δ is best found by comparing amplitudes of oscillations which are
separated by n periods. The graph of

loge
A0

An

versus n for different values of n has a slope δ.

Worked Example

Show that the reduction of a damped amplitude to half its value takes 1.39m/r seconds

loge2 =
t
2

r
m

= 0.693 ∴ t = 1.386
m
r
sec

2.3.2 Relaxation Time or Modulus of Decay

Another way of expressing the damping effect is by means of the time taken for the amplitude to decay
to

e−1 = 0.368

of its original value A0. This time is called the relaxation time or modulus of decay and the amplitude

At = A0 e−rt/2m = A0 e
−1

at a time t = 2m/r.
Measuring the natural decay in terms of the fraction e−1 of the original value is a very common

procedure in physics. The time for a natural decay process to reach zero is, of course, theoretically
infinite.

2.3.3 The Quality Factor or Q-value of a Damped Simple Harmonic Oscillator

This measures the rate at which the energy decays. Since the decay of the amplitude is represented by

A = A0 e
−rt/2m

the decay of energy is proportional to

A2 = A2
0 e

(−rt/2m)2
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36 Introduction to Vibrations and Waves

and may be written

E = E0 e
(−r/m)t

where E0 is the energy value at t = 0.
The time for the energy E to decay to E0 e

−1 is given by t = m/r seconds during which time the
oscillator will have vibrated through ω′m/r rad.

We define the quality factor

Q =
ω′m

r

as the number of radians through which the damped system oscillates as its energy decays to

E = E0 e
−1

If r is small, then Q is very large and

s
m

� r2

4m2

so that

ω′ ≈ ω0 =
( s

m

)1/2

Thus, we write, to a very close approximation,

Q =
ω0m

r

which is a constant of the damped system.
Since r/m now equals ω0/Q we can write

E = E0 e
(−r/m)t = E0 e

−ω0t/Q

The fact that Q is a constant (= ω0m/r) implies that the ratio

energy stored in system
energy lost per cycle

is also a constant, for

Q
2π

=
ω0m
2πr

=
ν0m

r

is the number of cycles (or complete oscillations) through which the system moves in decaying to

E = E0 e
−1

and if

E = E0 e
(−r/m)t



�

�

“Pain-Driver” — 2014/12/30 — 11:18 — page 37 — #17
�

�

�

�

�

�

Damped Simple Harmonic Motion 37

the energy lost per cycle is

−ΔE =
dE
dt

Δt =
−r
m

E
1
ν ′

where Δt = 1/ν′ = τ ′, the period of oscillation.
Thus, the ratio

energy stored in system
energy lost per cycle

=
E

−ΔE
=

ν′m
r

≈ ν0m
r

=
Q
2π

In the next chapter we shall meet the same quality factor Q in two other roles, the first as a measure
of the power absorption bandwidth of a damped oscillator driven near its resonant frequency and again
as the factor by which the displacement of the oscillator is amplified at resonance.

Worked Example

When an electron in an excited atom radiates light it behaves as a damped simple harmonic oscillator.
The wavelength of the radiation is 500 · 10−9 m and its intensity decays to e−1 in 10−8 sec. What is the
Q of the system? The length of the radiated wavetrain is called the coherence length l = ct. How long is
the coherence length and how many waves does it contain?

Solution

E
−dE

= Q = ω0t = 2πνt =
2πct
λ

=
2π × 3 × 108 × 10−8

5 × 10−7
≈ 4 × 107

l = ct = 3 × 108 × 10−8 = 3metres

No. of waves = 3 × 109

500
= 6 × 106

2.3.4 Energy Dissipation

We have seen that the presence of the resistive force reduces the amplitude of oscillation with time as
energy is dissipated.

The total energy remains the sum of the kinetic and potential energies

E =
1
2

mẋ2 +
1
2

sx2

Now, however, dE/dt is not zero but negative because energy is lost, so that

dE
dt

=
d

dt

(
1
2

mẋ2 +
1
2

sx2

)
= ẋ(mẍ + sx)

= ẋ(−rẋ) for mẍ + rẋ + sx = 0

i.e. dE/dt = −rẋ2, which is the rate of doing work against the frictional force (dimensions of force ×
velocity = force × distance/time).
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38 Introduction to Vibrations and Waves

Worked Example

Show that the average value of energy loss per cycle = 1
2 rω2a2 when x = asinωt.

If x = asinωt, ẋ = ωacosωt with an average value per cycle of ẋ2 = 1
2ω

2a2.

∴ Average loss =
1
2

rω2a2

2.3.5 Damped SHM in an Electrical Circuit

The force equation in the mechanical oscillator is replaced by the voltage equation in the electrical circuit
of inductance, resistance and capacitance (Figure 2.7).

We have, therefore,

L
dI
dt

+ RI +
q
C

= 0

or

Lq̈ + Rq̇ +
q
C

= 0

and by comparison with the solutions for x in the mechanical case we know immediately that the charge

q = q0 e
−Rt/2L±(R2/4L2−1/LC)1/2t

which, for 1/LC > R2/4L2, gives oscillatory behaviour at a frequency

ω2 =
1

LC
− R2

4L2

+
+

+

+ + = 0

–
–

–

q

IR

C

dlL
dt

dlL IR
dt

q

C

Figure 2.7 Electrical circuit of inductance, capacitance and resistance capable of damped simple harmonic
oscillations. The sum of the voLtages around the circuit is given from Kirchhoff’s Law as L dI

dt + RI + q
C = 0.
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Damped Simple Harmonic Motion 39

From the exponential decay term we see that R/L has the dimensions of inverse time T−1 or ω, so that
ωL has the dimensions of R; that is, ωL is measured in ohms.

Similarly, since ω2 = 1/LC, ωL = 1/ωC, so that 1/ωC is also measured in ohms. We shall use these
results in the next chapter.

Worked Example

In Figure 2.6 show that critical damping occurs when R = 2ω0L where ω2
0 = 1

LC . Using its mechanical
equivalent show that Q = ω0L/R. The system is very heavily damped when R � L so that L may be
ignored. Show that the relaxation time is RC for such a circuit.

Solution

Critical dumping:
1

LC
=

R2

4L2
= ω2

0 ∴ R = 2ω0L

Analogy gives L → m and R → r ∴ Q = ω0
m
r
→ ω0L

R

Without L, 2.6 is an RC circuit with q = q0e
−t/RC and a relaxation time = RC. (Note that RC ≡

mechanical r/s. See end of section 2.2.3 Region 1 Heavy Damping.)

Problem 2.1. A critically damped vibrating mechanical system is displaced a distance A from equilib-
rium and released from rest. Use the boundary condition x = A and ẋ = 0 at t = 0 in equation 2.3 to
show that its subsequent displacement is given by x = A(1 + ω0t)e−ω0t.

Problem 2.2. A damped simple harmonic oscillator has a mass of 5 kg, an oscillation frequency of
0.5 Hz and a logarithmic decrement of 0.02. Calculate the values of the stiffness force s and the resistive
force r of the oscillator.

Problem 2.3. A critically damped mechanical system consist of a pan hanging from a spring with a
damping. What is the value of the damping force r if a mass extends the spring by 10 cm without
overshoot. The mass is 5 kg. (g = 9.81 ms−2)

Problem 2.4. A capacitance C with a charge q0 at t = 0 discharges through a resistance R. Use the
voltage equation q/C + IR = 0 to show that the relaxation time of this process is RC s; that is,

q = q0 e
−t/RC

(Note that t/RC is non-dimensional.)

Problem 2.5. The frequency of a damped simple harmonic oscillator is given by

ω′2 =
s
m

− r2

4m2
= ω2

0 −
r2

4m2

(a) If ω2
0 − ω′2 = 10−6ω2

0 show that Q = 500 and that the logarithmic decrement δ = π/500.
(b) If ω0 = 106 and m = 10−10 kg show that the stiffness of the system is 100 N m−1, and that the

resistive constant r is 2 × 10−7N · sm−1.
(c) If the maximum displacement at t = 0 is 10−2 m, show that the energy of the system is 5 × 10−3J

and the decay to e−1 of this value takes 0.5 ms.
(d) Show that the energy loss in the first cycle is 2π × 10−5 J.
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40 Introduction to Vibrations and Waves

Problem 2.6. Show that the fractional change in the resonant frequency ω0 (ω
2
0 = s/m) of a damped

simple harmonic mechanical oscillator is ≈ (8Q2)−1 where Q is the quality factor.

Problem 2.7. The maximum displacement of a simple harmonic oscillator x = asinωt occurs when
ωt = π/2. In a damped oscillator the maximum occurs at ωt slightly less than π/2. Show that the
maximum is advanced an angle Φ ≈ 1

2Q , where Q = ω0m/r.

Problem 2.8. A plasma consists of an ionized gas of ions and electrons of equal number densities
(ni = ne = n) having charges of opposite sign ±e, and masses mi and me, respectively, where mi > me.
Relative displacement between the two species sets up a restoring

+

+
+
+
+
+
+
+

+ –
–
–
–
–
–

–
–
–

–nex

nex
ϵ0

x

E =

nex

/

electric field which returns the electrons to equilibrium, the ions being considered stationary. In the dia-
gram, a plasma slab has all its electrons displaced a distance x to give a restoring electric field E = nex/ε0,
where ε0 is constant. Show that the restoring force on each electron is −ne2x/ε0 and that they oscillate
simple harmonically with angular frequencyω2

e = ne2/meε0. This frequency is called the electron plasma
frequency, and only those radio waves of frequency ω > ωe will propagate in such an ionized medium.
Hence the reflection of such waves from the ionosphere.

Problem 2.9. When the string of an instrument is plucked the sound intensity (energy) decreases by a
factor of 2 after 4 seconds. The natural frequency of the string is 330 Hz. Calculate the relaxation time,
the Q of the system and the fractional energy loss per cycle.
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The Forced Oscillator

Introduction

In Chapter 1 we saw how many different physical systems could be described by the same equation of
motion. Here we extend that principle to more complicated systems, those driven by outside influences
which increase their energy. A tuned radio circuit is rarely associated with a forced mechanical oscillator
but we shall see that the equations which govern the behaviour of both oscillators are identical so the
solutions to their equations are applicable to each system. Moreover the electrical force from an electro-
magnetic wave operating on a charged electron in an atom combines both types of oscillator and reveals
many optical properties of matter.

Essentially there is no new mathematics in this chapter but in showing the similarity between electri-
cal and mechanical oscillators we shall highlight how much more information is gained by the use of
i =

√
−1 as a vector operator particularly in the cases of impedance and phase.

3.1 The Operation of i upon a Vector

We have already seen that a harmonic oscillation can be conveniently represented by the form eiωt. In
addition to its mathematical convenience i can also be used as a vector operator of physical significance.
We say that when i precedes or operates on a vector the direction of that vector is turned through a
positive angle (anticlockwise) of π/2, i.e. i acting as an operator advances the phase of a vector by 90◦.
The operator −i rotates the vector clockwise by π/2 and retards its phase by 90◦. The mathematics of i
as an operator differs in no way from its use as

√
−1 and from now on it will play both roles.

The vector r = a + ib is shown in Figure 3.1, where the direction of b is perpendicular to that of a
because it is preceded by i. The magnitude or modulus of r is written

r = |r| = (a2 + b2)1/2

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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r

a

ib

–ib

a

r* r* = re–iϕ

r = reiϕ

r cos ϕ

–ir sin ϕ
ϕ

ϕ
ir sin ϕ

Figure 3.1 Vector representation using i operator and exponential index. Star superscript indicates complex
conjugate where −i replaces i.

and

r2 = (a2 + b2) = (a + ib)(a − ib) = rr∗,

where (a − ib) = r∗ is defined as the complex conjugate of (a + ib); that is, the sign of i is changed.
The vector r∗ = a − ib is also shown in Figure 3.1.
The vector r can be written as a product of its magnitude r (scalar quantity) and its phase or direction

in the form (Figure 3.1)

r = r eiφ = r(cosφ+ i sinφ)

= a + ib

showing that a = r cosφ and b = r sinφ.
It follows that

cosφ =
a
r
=

a

(a2 + b2)1/2

and

sinφ =
b
r
=

b

(a2 + b2)1/2

giving tanφ = b/a.
Similarly

r∗ = r e−iφ = r(cosφ− i sinφ)

cosφ =
a
r
, sinφ =

−b
r

and tanφ =
−b
a

(Figure 3.1)

The reader should confirm that the operator i rotates a vector by π/2 in the positive direction (as stated in
the first paragraph of section 3.1 The Operation of i upon a Vector) by taking φ = π/2 in the expression

r = r eiφ = r(cos π/2 + i sinπ/2)

Note that φ = −π/2 in r = r e−iπ/2 rotates the vector in the negative direction.
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The Forced Oscillator 43

3.2 Vector Form of Ohm’s Law

We begin our discussion on forced oscillators with a very common electrical equation.
Ohm’s Law is first met as the scalar relation V = IR, where V is the voltage across the resistance R

and I is the current through it. Its scalar form states that the voltage and current are always in phase. Both
will follow a sinωt or a cosωt curve.

However, the presence of either or both of the other two electrical components, inductance L and
capacitance C, will introduce a phase difference between voltage and current, and Ohm’s Law takes the
vector form

V = IZe,

Where Ze, called the impedance, replaces the resistance, and is the vector sum of the effective resistances
of R, L and C in the circuit.

When an alternating voltage V0 e
iωt of frequency ω is applied across a resistance, inductance and

capacitor in series as in Figure 3.2a, the balance of voltages is given by

IR + L
dI
dt

+ q/C = V0e
iωt = V0(cosωt + i sinωt) (3.1)

and the current through the circuit is given by I = I0e
iωt. The voltage across the inductance

VL = L
dI
dt

= L
d

dt
I0 e

iωt = iωLI0 e
iωt = iωLI

But ωL, as we saw at the end of the last chapter, has the dimensions of ohms, being the value of the
effective resistance presented by an inductance L to a current of frequency ω. The product ωLI with
dimensions of ohms times current, i.e. volts, is preceded by i; this tells us that the phase of the voltage
across the inductance is 90◦ ahead of that of the current through the circuit.

Similarly, the voltage across the capacitor is

q
C

=
1
C

∫
Idt =

1
C

I0

∫
eiωtdt =

1
iωC

I0e
iωt = − iI

ωC

(since 1/i = −i).
Again 1/ωC, measured in ohms, is the value of the effective resistance presented by the capacitor to

the current of frequency ω. Now, however, the voltage I/ωC across the capacitor is preceded by −i and

+ + +–

dl

V0eiωt
l = l0eiωt

L
IR

q

Cdt – –

Figure 3.2a An electrical forced oscillator. The voltage V0 eiωt is applied to the series LCR circuit giving V0 eiωt =
LdI/dt + IR + q/C.
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therefore lags the current by 90◦. Equation 3.1 becomes

iωLI + IR − iI/ωC = V0 e
iωt

or
[

R + i

(
ωL − 1

ωC

)]
I0 e

iωt = V0 e
iωt

The voltage and current across the resistance are in phase and Figure 3.2b shows that the vector form of
Ohm’s Law may be written V = IZe = I[R + i(ωL − 1/ωC)], where the impedance Ze = R + i(ωL −
1/ωC). The quantities ωL and 1/ωC are called reactances because they introduce a phase relationship as
well as an effective resistance, and the bracket (ωL− 1/ωC) is often written Xe, the reactive component
of Ze.

The magnitude, in ohms, i.e. the value of the impedance, is

Ze =

[
R2 +

(
ωL − 1

ωC

)2
]1/2

and the vector Ze may be represented by its magnitude and phase as

Ze = Zee
iφ = Ze(cosφ+ i sinφ)

so that

cosφ =
R
Ze

, sinφ =
Xe

Ze

and

tanφ = Xe/R,

where φ is the phase difference between the total voltage across the circuit and the current through it.
The value of φ can be positive or negative depending on the relative value of ωL and 1/ωC: when

ωL > 1/ωC, φ is positive, but the frequency dependence of the components shows that φ can change
both sign and size.

The magnitude of Ze is also frequency dependent and has its minimum value Ze = R whenωL = 1/ωC
with I at a maximum when ω2 = 1/LC.

R

iωL ωL –i 1

ωC

ωC

R

Ze
iXe = i

1–i

ωL –
ϕ

1
ωC

Figure 3.2b Vector addition of resistance and reactances to give the electrical impedance Ze = R+i(ωL−1/ωC).
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In the vector form of Ohm’s Law, V = IZe. If V = V0 e
iωt and Ze = Ze e

iφ, then we have

I =
V0e

iωt

Zeeiφ
=

V0

Ze
ei(ωt−φ)

giving a current of amplitude V0/Ze which lags the voltage by a phase angle φ.
In such an equation the real part of the left-hand side matches the real part of the right-hand side and

the imaginary part of the left-hand side matches the imaginary part of the right-hand side.
So for V0e

i(ωt−φ), the real part V0 cos(ωt − φ) gives I0 cos(ωt − φ) and the imaginary part (i)
V0 sin(ωt − φ) gives (i) I0 sin(ωt − φ).

3.3 The Tuned LCR Circuit

Our first example of a lightly damped forced oscillator forms one of the early stages of an electronic
system such as a radio receiver. It is a series circuit of an inductance L, a resistance R and a variable
capacitor C. Figure 3.3.

Changing the value of C changes the resonant frequency ω2
0 = 1/LC of the circuit and allows us to

select and amplify the different frequencies ω0 transmitted by radio stations in the region. The value
of V0 the transmitted signal is constant and is independent of the current drawn by the circuit. At a
given resonant frequency ω0 the impedance of the receiver is R and for an input voltage V0 cosωt, for
all practical purposes, the voltages across the circuit elements are at a maximum with VR = V0 and
VL − VC = 0 because they are anti-phase. The maximum values of VL and VC may be written as QV0

where Q is the amplification factor at resonance. To find the amplification of VC at resonance which is
passed on to the next stage of the receiver we consider the voltage equation taken around Figure 3.3 as

L
dI
dt

+ IR +
q
c
= V0 e

iωt or

(
iωL + R − 1

ωC

)
I0 e

iωt = V0 e
iωt

giving

I0 =
V0[

R2 + (ωL − 1
ωC )

2
]1/2

=
V0

L
ω

[
ω2R2

L2 + (ω2 − ω2
0)

2
]1/2

where ω2
0 =

1
LC

V0eiωt

VCmax

R

C

L

Figure 3.3 Tuned LCR circuit with VCmax connected to next stage at resonance.
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The resonance value of the capacitance voltage VC max results from the maximum current I0max flowing
through the capacitance impedance ZC = 1/ωC so

VC max = I0max/ωC =
V0

ωLC
ω

[
ω2R2

L2 + (ω2 − ω2
0)

2
]1/2

∴ VC max

V0
=

1
LC[ω2R2/L2 + (ω2 − ω2

0)
2]1/2

=
ω2

0

[ω2R2/L2 + (ω2 − ω2
0)

2]1/2

Plotting VC max/V0 against ω gives the curve of Figure 3.4 with a peak at the input frequency ω = ω0.
The peak value is written Q which measures the amplification at that frequency.

Worked Example

At ω0, Ze = R and I = V0/R

VL = L
dI
dt

= L
ω0V0

R

∴ VL

V0
=

ω0L
R

= Q

At ω0, VC max = VL

∴ VC max

V0
= Q

Tuning the circuit selects one station at a time and the curve of Figure 3.4 is translated along the horizontal
ω axis peaking at successive values of ω0 in the transmitting region. The narrower the upper part of the
curve the sharper the tuning and the increase in selectivity, free from interference from signals from
nearby frequencies.

Q

VCmax

1

V0

ω0 ω

Figure 3.4 Maximum VCmax at ω0 resonance of tuned LCR circuit. VCmax/V0 = Q, the amplification factor.
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The height of the peak measures Q at which stage the voltage across the capacitor equals QV0 (equal
and opposite to the voltage across the inductance) while VR across the resistance equals V0 the input
signal voltage.

The upper part of the curve in Figure 3.4 is asymmetric but the curve of the power VI = I2R absorbed
by the circuit from the transmitted signal generator is symmetric. This is discussed in section 3.5 (The
Q Value in Terms of the Resonance Absorption Bandwidth) which confirms that the amplification factor
Q = ω0L/R. Since L/R is constant then Q = ω0L/R → 0 as ω0 decreases. This is shown in Figure 3.4,
which also shows that for a fixed value of ω0 VC max/V0 → 1 as ω the transmitted frequency increases.

In conventional radio circuits at frequencies of a megacycle Q values are of the order of a few hundred;
at higher radio frequencies resonant copper cavities have Q values of 500,000. Optical absorption in
crystals and nuclear magnetic resonances are often described in terms of Q values. The Mössbauer effect
in nuclear physics involves Q values of 1010.

3.4 Power Supplied to Oscillator by the Input Voltage

In order to maintain the steady state oscillations of a system the input voltage must replace the energy
lost in each cycle because of the presence of the resistance. We shall now derive the most important result
that:

‘in the steady state the amplitude and phase of a driven oscillator adjust themselves so that the average
power supplied by the input voltage just equals that being dissipated by the resistance’.

The instantaneous power P supplied is equal to the product of the instantaneous applied voltage and
the instantaneous current; that is,

P = VI = V0 cosωt
V0

Ze
cos(ωt − φ)

=
V2

0

Ze
cosωt cos(ωt − φ)

The average power

Pav =
total work per oscillation

oscillation period

∴ Pav =

∫ T

0

P dt
T

where T = oscillation period

=
V2

0

ZeT

∫ T

0
cosωt cos(ωt − φ)dt

=
V2

0

ZeT

∫ T

0
[cos2 ωt cosφ+ cosωt sinωt sinφ)dt

=
V2

0

2Ze
cosφ

because

∫ T

0
cosωt × sinωt dt = 0
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and

1
T

∫ T

0
cos2 ωt dt =

1
2

The power supplied by V0 is not stored in the system, but dissipated as the power VI = I2R lost across
the resistance R.

Now

I2R = R
V2

0

Z2
e
cos2(ωt − φ)

and the average value of this over one period of oscillation is

1
2

RV2
0

Z2
e

=
1
2

V2
0

Ze
cosφ because

R
Ze

= cosφ

This proves the initial statement that the power supplied equals the power dissipated.
The power supplied is given by VI cosφ, where V and I are the instantaneous r.m.s. values of voltage

and current and cosφ is known as the power factor.

VI cosφ =
V2

Ze
cosφ =

V2
0

2Ze
cosφ

since

V =
V0√

2

the r.m.s. value for an alternating voltage.
Note that in V2

Ze
cosφ when Ze is a reactance the factor i in Ze means that φ is 90◦ between V and I and

no power is consumed.
The power supplied (and absorbed) is at a maximum at the resonant frequency ω0 (where ω2

0 = 1/LC)
of the circuit, that is when Ze = R its minmum value.

These features are displayed in Figure 3.5 where Pav(maximum) = V2
0/2R, and cosφ = 1 because

φ = 0 when Ze = R and V and I are in phase. Note that the Absorption Resonance Curve is symmetric
about ω0.

3.5 The Q-Value in Terms of the Resonance Absorption Bandwidth

In the last chapter we discussed the quality factor of an oscillator system in terms of energy decay. We
may derive the same parameter in terms of the curve of Figure 3.5, where the sharpness of the resonance
is precisely defined by the ratio

Q =
ω0

ω2 − ω1
=

ω0

Δω
,
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Pav(max)

ω1 ω0 ω2 ω

V2
0

2R
=

V2
0

4R

Figure 3.5 Graph of average power versus ω supplied to an oscillator by the input voltage. Bandwidth ω2 − ω1

of resonance curve defines response in terms of the quality factor, Q = ω0/(ω2 −ω1), where ω2
0 = 1/LC. Note the

curve symmetry about ω0.

where ω2 and ω1 are those frequencies at which the power supplied

Pav =
1
2

Pav(maximum)

The frequency difference ω2 − ω1 is often called the bandwidth.
Now

Pav = RV2
0/2Z2

e =
1
2

Pav(maximum) =
1

2
V2

0/2R =
1

4

V2
0

R

when

Z2
e = 2R2

that is, when

R2 +

(
ωL − 1

ωC

)2

= 2R2 or

(
ωL − 1

ωC

)
= ±R.

If ω2 > ω1, then

ω2L − 1
ω2C

= +R
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and

ω1L − 1
ω1C

= −R

Eliminating C between these equations gives the bandwidth frequency at half resonance absorption as

ω2 − ω1 = R/L

so that

Q = ω0L/R

Worked Example

The purpose of this example is to show how Q of the resonance absorption curve, associated with a
bandwidth Δω, is the same Q as the energy decay Q of Chapter 2. The process of energy absorption
and decay are the mirror images of each other. The resistance force in damped simple harmonic motion
is exactly that force responsible for the energy absorption of a driven oscillator. An electron in an atom
absorbs energy when excited by an electromagnetic wave and will radiate that energy when free to do so.
The bandwidthΔω enters the scene because, as we shall see in Chapter 6, the decaying radiated wavetrain
from the atom has a finite length. Only a wavetrain of infinite length may be represented by a single
frequency. Shorter wavetrains need a frequency range Δω to describe them; the shorter the wavetrain
the wider the range Δω.

Problem

A peak in the absorption spectrum of an atom occurs at λ = 550 nm and has a width of Δλ = 1.2 ×
10−5 nm. Calculate the lifetime of the excited atom and the length of the radiated wavetrain.

Solution

ω = 2πν = 2πc/λ ∴ Δω = −2πcΔλ/λ2 where Δλ = 1.2 × 10−5 nm.

Q = ω0τ (where τ is the lifetime) = ω0
m
r
= ω0/Δω

(550 × 10−9)2

2π × 3 × 108 × 1.2 × 10−14
=

1
Δν

= 1.3 × 10−8 sec = τ

Length of radiated wavetrain = cτ = 3 × 1.3 = 3.9metres

3.6 The Forced Mechanical Oscillator

We are now in a position to discuss the physical behaviour of a mechanical oscillator of mass m, stiffness
s and resistance r being driven by an alternating force F0 cosωt, where F0 is the amplitude of the force
(Figure 3.6). This is the mechanical equivalent of the series electrical LCR circuit (Figure 3.3).

The mechanical equation of motion, i.e. the dynamic balance of forces, is given by

mẍ + rẋ + sx = F0 cosωt
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s

F0 cos ωtr m

Figure 3.6 Mechanical forced oscillator with force F0 cosωt applied to damped mechanical circuit of Figure 2.2.

In the voltage equation q ≡ x, q̇ ≡ ẋ = I and q̈ ≡ dI
dt ≡ ẍ, so we have

Lq̈ + Rq̇ + q/C = V0 cosωt

In the mechanical oscillator our chief focus will be on the variable x, the displacement of the oscillator
from equiliblium and not on ẋ, the velocity which is the equivalent to the current I in the electrical case.
The identical form of the force and voltage equations means that a number of the results we obtained
from the electrical equation may be carried over directly to the mechanical equation.

(a) Impedance
The impedance of the mechanical oscillator is defined as the force required to produce unit velocity,
that is, Zm = F/v or F = vZm. (c.f. electrical V = IZe) Comparing the constant coefficients of the
variables in the force and voltage equations, we can write Zm = r + i(ωm− s/m) = r + iXm where
Xm = (ωm − s/ω) (c.f. electrical Ze = R + i(ωL − 1/ωC)). As with Ze we can write Zm = Zm eiφ

where cosφ = r/Zm, sinφ = Xm/Zm and tanφ = Xm/r.
(b) The power supplied by the force to maintain steady state mechanical oscillations is given by

F2
0

2Zm
cosφ

(
c.f. electrical

V2
0

2Ze
cosφ

)

This power replaces the loss due to the work rate done against the frictional force, that is, force
times velocity

(rẋ)ẋ = rẋ2 = r
F2

0

Z2
m
cos2(ωt − φ)

which averages over one period of oscillation

1
2

F2
0r

Z2
m

=
1
2

F2
0

Zm
cosφ where cosφ =

r
Zm

(c.f. electrical
1
2

V2
0

Ze
cosφ)

(c) Variation of Pav with ω versus absorption resonance curve (Figure 3.5)
In the mechanical case the average power supplied Pav = F2

0 cosφ/2Zm is a maximum when
cosφ = 1 and (ωm− s

m) = 0 at ω2
0 = s/m. The force and velocity (≡ voltage and current) are then

in phase and Zm has its minimum value equal to r. Thus Pav(max) = F2
0/2r.

(d) The Q value in terms of the resonance absorption bandwidth
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Replace R by r: V0 by F0 and Ze by Zm.

Z2
m = r2 +

(
ωm − s

m

)2
= 2r2 at

1
2

Pav(max)

when

(
ωm − s

ω

)2
= r2 i.e.

(
ωm − s

ω

)
= ±r

for ω2 > ω1,

ω2m − s
ω2

= +r and ω1m − s
ω1

= −r

Eliminate s between these equations to give

ω2 − ω1 =
r
m

so Q =
ω0

ω2 − ω1
=

ω0m
r

(
c.f. Q =

ω0L
R

)

Returning to the equation of motion for the forced mechanical oscillator

mẍ + rẋ + sx = F0 cosωt

the complete solution for x in the equation of motion consists of two terms:

(1) a ‘transient’ term which dies away with time and is, in fact, the solution to the equation mẍ + rẋ +
sx = 0 discussed in Chapter 2. This contributes the term

x = Ce−rt/2m ei(s/m−r2/4m2)1/2t

which decays with e−rt/2m. The second term
(2) is called the ‘steady state’ term, and describes the behaviour of the oscillator after the transient term

has died away.

Both terms contribute to the solution initially, but for the moment we shall concentrate on the ‘steady
state’ term which describes the ultimate behaviour of the oscillator.

To do this we shall rewrite the force equation in vector form and represent cosωt by eiωt as follows:

mẍ + rẋ + sx = F0 e
iωt (3.2)

Solving for the vector x will give both its magnitude and phase with respect to the driving force F0 e
iωt.

Initially, let us try the solution x = A eiωt, where A may be complex, so that it may have components in
and out of phase with the driving force.

The velocity

ẋ = iωA eiωt = iωx
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so that the acceleration

ẍ = i2ω2x = −ω2x

and equation (3.2) becomes

(−Aω2m + iωAr + As) eiωt = F0 e
iωt

which is true for all t when

A =
F0

iωr + (s − ω2m)

or, after multiplying numerator and denominator by −i

A =
−iF0

ω[r + i(ωm − s/ω)]
=

−iF0

ωZm

Hence

x = A eiωt =
−iF0 e

iωt

ωZm
=

−iF0 e
iωt

ωZm eiφ

=
−iF0 e

i(ωt−φ)

ωZm

where

Zm =
[
r2 + (ωm − s/ω)2

]1/2

This vector form of the steady state behaviour of x gives three pieces of information and com-
pletely defines the magnitude of the displacement x and its phase with respect to the driving force
after the transient term dies away. It tells us

(1) That the phase difference φ exists between x and the force because of the reactive part
(ωm − s/ω) of the mechanical impedance.

(2) That an extra difference is introduced by the factor −i and even if φ were zero the
displacement x would lag the force F0cos ωt by 90◦.

(3) That the maximum amplitude of the displacement x is F0/ωZm. We see that this is dimen-
sionally correct because the velocity x/t has dimensions F0/Zm.

Having used F0 e
iωt to represent its real part F0 cosωt, we now take the real part of the solution

x =
−iF0 e

i(ωt−φ)

ωZm

to obtain the actual value of x. (If the force had been F0 sinωt, we would now take that part of x preceded
by i.)
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Now

x = − iF0

ωZm
ei(ωt−φ)

= − iF0

ωZm
[cos (ωt − φ) + i sin(ωt − φ)]

= − iF0

ωZm
cos (ωt − φ) +

F0

ωZm
sin(ωt − φ)

The value of x resulting from F0 cosωt is therefore

x =
F0

ωZm
sin(ωt − φ)

[the value of x resulting from F0 sinωt would be −F0 cos (ωt − φ)/ωZm].
Note that both of these solutions satisfy the requirement that the total phase difference between dis-

placement and force is φ plus the −π/2 term introduced by the −i factor. When φ = 0 the displacement
x = F0 sinωt/ωZm lags the force F0 cosωt by exactly 90◦.

To find the velocity of the forced oscillation in the steady state we write

v = ẋ = (iω)
(−iF0)

ωZm
ei(ωt−φ)

=
F0

Zm
ei(ωt−φ)

We see immediately that

(1) There is no preceding i factor so that the velocity v and the force differ in phase only by φ, and
when φ = 0 the velocity and force are in phase.

(2) The amplitude of the velocity is F0/Zm, which we expect from the definition of mechanical
impedance Zm = F/v.

Again we take the real part of the vector expression for the velocity, which will correspond to the real
part of the force F0 e

iωt. This is

v =
F0

Zm
cos(ωt − φ)

Thus, the velocity is always exactly 90◦ ahead of the displacement in phase and differs from the force
only by a phase angle φ, where

tanφ =
ωm − s/ω

r
=

Xm

r

so that a force F0 cosωt gives a displacement

x =
F0

ωZm
sin(ωt − φ)
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and a velocity

ẋ = ωx = v =
F0

Zm
cos(ωt − φ)

and an acceleration

ẍ = −ω2x = −ωF0

Zm
sin(ωt − φ) (cf. Figure 1.3)

Frequencies at which xmax, ẋmax and ẍmax occur

The amplitude of x = F0/ωZm so xmax occurs at a minimum of ωZm that is when

d

dω
ωZm = 0 =

d

dω
ω[r2 + (ωm − s/m)2]

1
2

i.e. when

2ωr2 + 4ωm(ω2m − s) = 0

or

2ω[r2 + 2m(ω2m − s)] = 0

giving

either ω = 0 or ω2 =
s
m

− r2

2m2
= ω2

0 −
r2

2m2

The amplitude of ẋ = ωx = F0/Zm so ẋmax occurs at Zm(minimum), i.e.

(
ωm − s

m

)
= 0 or ω2

0 =
s
m

Worked Example

Prove that the acceleration ẍmax occurs at

ω2
0

ω2
=

(
1 − r2

2ω2
0m2

)
where ω2

0 =
s
m

The amplitude of

ẍmax = |ω2x| =
∣∣∣∣ F0

Zm/ω

∣∣∣∣
so ẍmax occurs at the minimum of

1
Zm/ω
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that is when

d

dω

1
Zm/ω

= 0

i.e. when

d

dω

(
r2

ω2
+

ω2

ω2
m2 − 2mω2

0

ω2
+

ω4
0m2

ω4

)
= 0

or

−2r2 ω

ω3
+ 4m2ω2

0
ω

ω3
− 4ω4

0m2ω
3

ω5
= 0

or

m2 ω

ω3

[
−r2

2ω2
0m2

+ 1

]
= m2ω2

0
ω3

ω5
= m2ω

2
0

ω2

ω

ω3

i.e. when

ω2
0

ω2
=

[
1 − r2

2ω2
0m2

]

3.7 Behaviour of Velocity v in Magnitude and Phase versus Driving Force Frequency ω

The velocity amplitude is

F0

Zm
=

F0

[r2 + (ωm − s/ω)2]1/2

so that the magnitude of the velocity will vary with the frequency ω because Zm is frequency dependent.
At low frequencies, the term −s/ω is the largest term in Zm and the impedance is said to be stiffness

controlled. At high frequencies ωm is the dominant term and the impedance is mass controlled. At a
frequency ω0 where ω0m = s/ω0, the impedance has its minimum value Zm = r and is a real quantity
with zero reactance.

The velocity F0/Zm then has its maximum value v = F0/r, and ω0 is said to be the frequency of
velocity resonance. Note that tanφ = 0 at ω0, the velocity and force being in phase.

The variation of the magnitude of the velocity with driving frequency, ω, is shown in Figure 3.7, the
height and sharpness of the peak at resonance depending on r, which is the only effective term of Zm atω0.

The expression

v =
F0

Zm
cos(ωt − φ)

where

tanφ =
ωm − s/ω

r
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F0

r

1
2

V
el

oc
ity

ω0 = (s/m)

ω

Figure 3.7 Velocity of forced oscillator versus driving frequency ω. Maximum velocity vmax = F0/r at ω2
0 = s/m.

Phase angle
ϕ (radians)
between
V and F

2
+ π

r increasing

v and F
in phase

v leads F

V lags F

0

2
– π

ω

Figure 3.8 Variation of phase angle φ versus driving frequency, where φ is the phase angle between the velocity
of the forced oscillator and the driving force. φ = 0 at velocity resonance. Each curve represents a fixed resistance
value.

shows that for positive φ; that is, ωm > s/ω, the velocity v will lag the force because −φ appears in the
argument of the cosine. When the driving force frequency ω is very high and ω → ∞, then φ → 90◦

and the velocity lags the force by that amount.
When ωm < s/ω, φ is negative, the velocity is ahead of the force in phase, and at low driving

frequencies as ω → 0 the term s/ω → ∞ and φ → −90◦.
Thus, at low frequencies the velocity leads the force (φ negative) and at high frequencies the velocity

lags the force (φ positive).
At the frequency ω0, however, ω0m = s/ω0 and φ = 0, so that velocity and force are in phase. Figure

3.8 shows the variation of φ with ω for the velocity, the actual shape of the curves depending upon the
value of r.

3.8 Behaviour of Displacement x versus Driving Force Frequency ω

The phase of the displacement

x =
F0

ωZm
sin(ωt − φ)
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is at all times exactly 90◦ behind that of the velocity. Whilst the graph of φ versus ω remains the same,
the total phase difference between the displacement and the force involves the extra 90◦ retardation
introduced by the −i operator. Thus, at very low frequencies, where φ = −π/2 rad and the velocity
leads the force, the displacement and the force are in phase as we should expect. At high frequencies
the displacement lags the force by π rad and is exactly out of phase, so that the curve showing the phase
angle between the displacement and the force is equivalent to the φ versus ω curve, displaced by an
amount equal to π/2 rad. This is shown in Figure 3.9.

The amplitude of the displacement x = F0/ωZm, and at low frequencies Zm = [r2+(ωm−s/ω)2]1/2 →
s/ω, so that x ≈ F0/(ωs/ω) = F0/s.

At high frequencies Zm → ωm, so that x ≈ F0/(ω
2m), which tends to zero as ω becomes very

large. At very high frequencies, therefore, the displacement amplitude is almost zero because of the
mass-controlled or inertial effect.

The velocity resonance occurs at ω2
0 = s/m, where the denominator Zm of the velocity amplitude

is a minimum, but the displacement resonance will occur, since x = (F0/ωZm) sin(ωt − φ), when the
denominator ωZm is a minimum. We saw just before the worked example at the end of section 3.6 that
this takes place when

ω2 =
s
m

− r2

2m2
= ω2

0 −
r2

2m2

Thus the displacement resonance occurs at a frequency slightly less than ω0, the frequency of velocity
resonance. For a small damping constant r or a large mass m these two resonances, for all practical
purposes, occur at the frequency ω0.

Denoting the displacement resonance frequency by

ωr =

(
s
m

− r2

2m2

)1/2

we can write the maximum displacement as

xmax =
F0

ωrZm

2

0

r increasing

x lags F by rad

x and F in phase

x lags F

Phase angle
ϕ (rad)0

Total phase
angle (radians)
between
x and F

– π

– π

2
– π

2
π

2
π

ω
ω0

Figure 3.9 Variation of total phase angle between displacement and driving force versus driving frequency ω.
The total phase angle is −φ− π/2 rad.
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Worked Example

We now prove that the value of ωrZm at ωr is equal to ω′r where

ω′2 =
s
m

− r2

4m2
= ω2

0 −
r2

4m2

xmax =
F0

ωZm
at ω2 = ω2

0 −
r2

2m2

i.e.

ω2Z2
m = ω2

[
r2 +

(
ωm − s

ω

)2
]

with ω2 = ω2
0 −

r2

2m2

= r2

(
ω2

0 −
r2

2m2

)
+

[(
ω2

0m − r2

2m

)
− s

]2

where
s
m

= ω2
0

= r2

(
ω2

0 −
r2

2m2

)
+

(
r2

2m

)2

= r2

(
ω2

0 −
r2

2m2
+

r2

4m2

)

= r2

(
ω2

0 −
r2

4m2

)

= ω′2r2

Since xmax = F0/ω
′r the amplitude at resonance is left low by increasing r with x and the variation

of x with ω for different values of r is shown in Figure 3.10. Keeping the resonance amplitude low is the
principle of vibration insulation.

3.9 The Q-Value as an Amplification Factor

At low frequencies (ω → 0) the displacement has a value x0 = F0/s, so that

(
xmax

x0

)2

=
F2

0

ω′2r2

s2

F2
0

=
m2ω4

0

r2[ω2
0 − r2/4m2]

=
ω2

0m2

r2[1 − 1/4Q2]1/2]
=

Q2

[1 − 1/4Q2]1/2

Hence:

xmax

x0
=

Q

[1 − 1/4Q2]1/2
≈ Q

[
1 +

1
8Q2

]
≈ Q

for large Q.
Thus the displacement at low frequencies is amplified by a factor of Q at displacement resonance.
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3.10 Significance of the Two Components of the Displacement Curve

Any single curve of Figure 3.10 is the superposition of the two component curves (a) and (b) in
Figure 3.11, for the displacement x may be rewritten

x =
F0

ωZm
sin(ωt − φ) =

F0

ωZm
(sinωt cosφ− cosωt sinφ)

or, since

cosφ =
r

Zm
and sinφ =

Xm

Zm

r increasing

D
is

pl
ac

em
en

t i
n 

un
its

 o
f

F0

S

Q = 5

Q = 4

Q = 3

Q = 2

ω0

ω

F
0 S

Figure 3.10 Curves of displacement vesus frequency given in terms of the quality factor Q of the system, where
Q is amplification at resonance of low frequency response x0 = F0/s.
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F0 /ωʹr

F0 /ω0r

F0 /2ω0r

ω0 – ω0

F0

S

F0
Xm

r2 + Xm2
(a) – ω

r
2m

ω0 + ωr
2m

F0
r

r2 + Xm2
(b) ω

Figure 3.11 A typical curve of Figure 3.10 resolved into its ‘anti-phase’ component (curve (a)) and its ‘90◦ out of
phase’ component (curve (b)). Curve (b) represents the resistive fraction of the impedance and curve (a) the reac-
tive fraction. Curve (b) corresponds to absorption and curve (a) to anomalous dispersion of an electromagnetic
wave in a medium having an atomic or molecular resonant frequency equal to the frequency of the wave.

as

x =
F0

ωZm

r
Zm

sinωt − F0

ωZm

Xm

Zm
cosωt

The cosωt component (with a negative sign) is exactly anti-phase with respect to the driving force
F0 cosωt. Its amplitude, plotted as curve (a) may be expressed as

−F0

ω

Xm

Z2
m
=

F0m(ω2
0 − ω2)

m2(ω2
0 − ω2)2 + ω2r2

(3.3)

where ω2
0 = s/m and ω0 is the frequency of velocity resonance.

The sinωt component lags the driving force F0 cosωt by 90◦. Its amplitude plotted as curve (b)
becomes

F0

ω

r
r2 + X2

m
=

F0ωr

m2(ω2
0 − ω2)2 + ω2r2

We see immediately that at ω0 curve (a) is zero and curve (b) is near its maximum but they combine to
give a maximum at ω where

ω2 = ω2
0 −

r2

2m2

the resonant frequency for amplitude displacement.
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These curves are particularly familiar in the study of optical dispersion where the forced oscillator is an
electron in an atom and the driving force is the oscillating field vector of an electromagnetic wave of fre-
quency ω. When ω is the resonant frequency of the electron in the atom, the atom absorbs a large amount
of energy from the electromagnetic wave and curve (b) is the shape of the characteristic absorption curve.
Note that curve (b) represents the dissipating or absorbing fraction of the impedance

r

(r2 + X2
m)

1/2

and that part of the displacement which lags the driving force by 90◦. The velocity associated with this
component will therefore be in phase with the driving force and it is this part of the velocity which appears
in the energy loss term rẋ2 due to the resistance of the oscillator and which gives rise to absorption.

On the other hand, curve (a) represents the reactive or energy storing fraction of the impedance

Xm

(r2 + X2
m)

1/2

and the reactive components in a medium determine the velocity of the waves in the medium which in
turn governs the refractive index n. In fact, curve (a) is a graph of the value of n2 in a region of anomalous
dispersion where the ω axis represents the value n = 1. These regions occur at every resonant frequency
of the constituent atoms of the medium.

Worked Example

In Figure 3.11 show that for small r the maximum value of curve (a) equation 3.3 is ≈ F0/2ω0r at
ω1 = (ω0 − r/2m) and its minimum value is −F0/2ω0r at ω2 = (ω0 + r/2m) where ω2

0 = s/m.
We write curve (a) as

F0m(ω2
0 − ω2)

m2(ω2
0 − ω2)

+ ω2r2 =
u
v

and we take

d

dω

(u
v

)
=

u′v − v′u
v2

(
where u′ =

d

dω
u

)

we equate u′v − v′u to 0.

u′v − v′u = −2F0ωv − [2m2(ω2
0 − ω2)(−2ω) + 2r2ω]u = 0

= m(ω2
0 − ω2)2 − ω2

0r2 = 0

with roots

ω1 =
(
ω2

0 − ω0
r
m

) 1
2

and ω2 =
(
ω2

0 + ω0
r
m

) 1
2



�

�

“Pain-Driver” — 2014/12/30 — 11:21 — page 63 — #23
�

�

�

�

�

�

The Forced Oscillator 63

For small r we write

ω1 =
(
ω2

0 − ω0
r
m

) 1
2
=

[(
ω2

0 −
r

2m

)2
− r2

4m2

] 1
2

≈ ω0 −
r

2m

and

ω2 =
(
ω2

0 + ω0
r
m

) 1
2
=

[(
ω2

0 +
r

2m

)2
− r2

4m2

] 1
2

≈ ω0 +
r

2m

The maximum and minimum values of curve (a) may be formed by inserting

ω1 =
(
ω2

0 − ω0
r
m

) 1
2

and

ω2 =
(
ω2

0 + ω0
r
m

) 1
2

in the expression for curve (a).
Inserting ω1 in the curve (a) expression gives

x =
F0ω0r

ω2
0r2 + ω2

0r2 − ω0r3/m
=

F0ω0r

2ω2
0r2 − ω0r3/m

=
F0

2ω0r − ω0r2/m
≈ F0

2ω0r

which is the maximum value of curve (a).
Inserting ω2 in the expression for curve (a) gives

x =
−F0ω0r

ω2
0r2 + ω2

0r2 + ω0r3/m
=

−F0ω0r

2ω2
0r2 + ω0r3/m

=
−F0

2ω0r + ω0r2/m
≈ −F0

2ω0r

which is the minimum value of curve (a).
Note that the frequency range ω2 − ω1 = r/m is the bandwidth at 1/2 maximum value F0/ω0r of the

absorption curve (b).

3.11 Problem on Vibration Insulation

Keeping the resonance amplitude low is the principle of vibration insulation. A typical vibration insulator
is shown in Figure 3.12. A heavy base is supported on a vibrating floor by a spring system of stiffness s
and viscous damper r. The insulator will generally operate at the mass controlled end of the frequency
spectrum and the resonant frequency is designed to be lower than the range of frequencies likely to be
met. Suppose the vertical vibration of the floor is given by x = x0 e

iωt about its equilibrium position
and y is the corresponding vertical displacement of the base about its rest position. The function of the
insulator is to keep the ratio y/x0 to a minimum in the steady state.
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Heavy base

r

Vibrating floor

Fixed reference level

y Equilibrium
rest position
of base

X = A cos ωt

Figure 3.12 Vibration insulator. A heavy base supported by a spring and viscous damper system on a vibrating
floor.

The equation of motion is given by

mÿ = −r(ẏ − ẋ)− s(y − x)

that is

mÿ + r(ẏ − ẋ) + s(y − x) = 0

Dividing by m we have

(
ÿ +

r
m

ẏ +
s
m

y
)
=

( s
m

x +
r
m

ẋ
)

which with s/m = ω2
0, x = x0 e

iωt and y = y0 e
iωt becomes

(−ω2 + iωr/m + ω2
0)y0 e

iωt = (ω2
0 + iωr/m)x0 e

iωt

or

y0

x0
=

ω2
0 + iωr/m

(ω2
0 − ω2) + iωr/m
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Recalling section 2.1 Complex Numbers (vi), we have

∣∣∣∣y0

x0

∣∣∣∣ =
∣∣∣∣y0y∗0
x0x∗0

∣∣∣∣
1
2

=

[
ω4

0 + ω2r2/m2

(ω2
0 − ω2

0)
2 + ω2r2/m2

] 1
2

∴
∣∣∣∣y0

x0

∣∣∣∣ =
[

ω4
0 + ω2r2/m2

(ω4
0 + ω2r2/m2) + ω2(ω2 − 2ω2

0)

] 1
2

Examing the denominator of |y0/x0| we see that
(a) y0/x0 = 1 for ω2 = 2s/m
(b) y0/x0 < 1 for ω2 > 2s/m and y0/x0 > 1 for ω2 < 2s/m
When ω2 = s/m, y0/x0 > 1 but r helps to keep y0 low.
When ω2 > 2s/m, y0/x0 < 1 but r is unhelpful.
The value of s/m = ω2

0 should be as low as possible.
The formal derivation of y0/x0 is given by the sum of two simple harmonic motions

y =
F0

ωZm
sin(ωt − φ) + A cosωt where x = A cosωt

and

F0 = mAω2

but, mathematically this is much more complicated.

3.12 The Effect of the Transient Term

Throughout this chapter we have considered only the steady state behaviour without accounting for
the transient term mentioned in section 3.6 The Forced Mechanical Oscillator, the equation of motion,
term (1). This term makes an initial contribution to the total displacement but decays with time as e−rt/2m.
Its effect is best displayed by considering the vector sum of the transient and steady state components.

The steady state term may be represented by a vector of constant length rotating anticlockwise at
the angular velocity ω of the driving force. The vector tip traces a circle. Upon this is superposed the
transient term vector of diminishing length which rotates anticlockwise with angular velocity ω′ =
(s/m − r2/4m2)1/2. Its tip traces a contracting spiral.

The locus of the magnitude of the vector sum of these terms is the envelope of the varying amplitudes
of the oscillator. This envelope modulates the steady state oscillations of frequency ω at a frequency
which depends upon ω′ and the relative phase between ωt and ω′t.

Thus, in Figure 3.13(a) where the total oscillator displacement is zero at time t = 0 we have the steady
state and transient vectors equal and opposite in Figure 3.13(b) but because ω �= ω′ the relative phase
between the vectors will change as the transient term decays. The vector tip of the transient term is shown
as the dotted spiral and the total amplitude assumes the varying lengths OA1, OA2, OA3, OA4, etc.
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t = 0

At t = 0, transient vector = BO = BA0

Steady state vector

0
A0 A4 A3

A2

A1

OB B

Tr
an

si
en

t v
ec

to
r

(a)

(b)

t

A1

A2

A3

A4

Figure 3.13 (a) The steady state oscillation (heavy curve) is modulated by the transient term which decays
exponentially with time. (b) In the vector diagram of (b) OB is the constant length steady state vector and BA1

is the transient vector. Each vector rotates anticlockwise with its own angular velocity. At t = 0 the vectors OB
and BA0 are equal and opposite on the horizontal axis and their vector sum is zero. At subsequent times the total
amplitude is the length of OA1 which changes as A traces a contracting spiral around B. The points A1, A2, A3

and A4 indicate how the amplitude is modified in (a).

Problem 3.1. Show that in a resonant LCR series circuit the maximum potential across the capacitor
occurs at a frequency

ω = ω0

(
1 − 1

2Q2
0

) 1
2

where

ω2
0 = (LC)−1
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and

Q0 = ω0L/R.

See the end of section 3.6 for the frequency of xmax.

Problem 3.2. In Problem 3.1 show that the maximum potential across the inductance occurs at a
frequency

ω = ω0

(
1 − 1

2Q2
0

)− 1
2

.

See the end of section 3.6 for the frequency of ẍmax.

Problem 3.3. A series LCR circuit has C = 8× 10−6 F, L = 2× 10−2 H and R = 75Ω. It is driven by
a voltage V(t) = 15 cosωt. Find (a) the resonant frequency in Hz of the circuit and (b) the amplitude of
the circuit at this frequency.

Problem 3.4. Show that the bandwidth of the resonance absorption curve defines the phase angle range
tanφ = ±1.

Problem 3.5. The average power P is absorbed by a driven oscillator and its resonance curve is sym-
metric. P is a maximum at ν = 100 Hz and its 1/2 maximum occurs at 95 Hz. What is the value of (a)
ω0 (b) the bandwidth Δω (c) Q and (d) if the force is suddenly removed after how many cycles will the
energy of the system be 1/e of its initial value?

Problem 3.6. Show that if r = (sm)
1
2 in a forced damped mechanical oscillator then the acceleration

amplitude at the frequency of velocity resonance equals the limit of the acceleration amplitude at high
frequencies.

Problem 3.7. In a forced mechanical oscillator show that the following are frequency independent: (a)
the displacement amplitude at low frequencies, (b) the velocity amplitude of velocity resonance and (c)
the acceleration amplitude at high frequencies as ω → ∞.

Problem 3.8. The equation mẍ+ sx = F0 sinωt describes the motion of an undamped simple harmonic
oscillator driven by a force of frequency ω. Show, by solving the equation in vector form, that the steady
state solution is given by

x =
F0 sinωt

m(ω2
0 − ω2)

where ω2
0 =

s
m

Sketch the behaviour of the amplitude of x versus ω and note that the change of sign as ω passes through
ω0 defines a phase change of π rad in the displacement. Now show that the general solution for the
displacement is given by

x =
F0 sinωt

m(ω2
0 − ω2)

+ A cosω0t + B sinω0t

where A and B are constant.
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Problem 3.9. The equation ẍ + ω2
0x = (−eE0/m) cosωt describes the motion of a bound undamped

electric charge −e of mass m under the influence of an alternating electric field E = E0 cosωt.
For an electron number density n show that the induced polarizability per unit volume (the dynamic
susceptibility) of a medium

χe = −n ex
ε0E

=
n e2

ε0m(ω2
0 − ω2)

(The permittivity of a medium is defined as ε = ε0(1+χ) where ε0 is the permittivity of free space. The
relative permittivity εr = ε/ε0 is called the dielectric constant and is the square of the refractive index
when E is the electric field of an electromagnetic wave.)

Problem 3.10. Repeat Problem 3.9 for the case of a damped oscillatory electron, by taking the
displacement x as the component represented by curve (a) in Figure 3.11 to show that

εr = 1 + χ = 1 +
n e2m(ω2

0 − ω2)

ε0[m2(ω2
0 − ω2)2 + ω2r2]

In fact, Figure 3.11(a) plots εr = ε/ε0. Note that for

ω � ω0, εr ≈ 1 +
n e2

ε0 mω2
0

and for

ω 	 ω0, εr ≈ 1 − n e2

ε0 mω2
(see Figure 6.3)

Problem 3.11. Light of wavelength 0.6μm (6000 ) is emitted by an electron in an atom behaving as a
lightly damped simple harmonic oscillator with a Q value of 5×107. Show from the resonance bandwidth
that the width of the spectral line from such an atom is 1.2 × 10−14 m.

Problem 3.12. The displacement of a forced oscillator is zero at time t = 0 and its rate of growth is
governed by the rate of decay of the transient term. If this term decays to e−k of its original value in a time t
show that, for small damping, the average rate of growth of the oscillations is given by x0/t = F0/2 kmω0

where x0 is the maximum steady state displacement, F0 is the force amplitude and ω2
0 = s/m.
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Coupled Oscillations

Introduction

Until now we have dealt with oscillators in isolation. Now we couple them so that they can pass their
energy to other oscillators. Such a series of oscillators forms a medium through which the energy of their
simple harmonic vibrations is transmitted as waves. We begin by showing how the coupling between two
atoms in a molecule leads, via the spectroscopy of their vibrations, to an estimate of the strength of the
chemical bond which acts as a spring between them. Coupling with weak springs displays the concepts
of normal modes, normal coordinates and degrees of freedom, that is, ways of taking up energy. Normal
modes are best known as the fundamental and harmonics of strings on a musical instrument. Where the
coupling takes place via spring stiffness and electrical inductance these energy storing parameters can
transfer their energy without loss. Loss mechanisms will be discussed in later chapters. Finally, with
identical masses equally spaced along an extended string we are able to derive the wave equation. This
needs, at the end of the chapter, an introduction to the notation of partial differentiation and Taylor’s
series.

4.1 Stiffness (or Capacitance) Coupled Oscillators

Worked Example

Figure 4.1(a) shows two hydrogen atoms in a hydrogen molecule which are connected by a chemical bond
acting as a spring. The atoms are free to vibrate along the x axis and these vibrations are antisymmetric
so the centre of mass of the system is stationary. In vibration the chemical bond, stiffness s, is alternately
stretched and compressed a distance of 2x as the atoms vibrate with amplitudes equal to x. The equation
of motion of each atom is therefore given by mẍ = −2sx or m

2 ẍ + sx = 0, a simple harmonic oscillation

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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(a)

sH H

(b)

l l

y x

Figure 4.1 (a) H atoms vibrating asymmetrically along the axis of the chemical bond. (b) Two identical pendu-
lums, each a light rigid rod of length l supporting a mass m and coupled by a weightless spring of stiffness s and
of natural length equal to the separation of the masses at zero displacement.

with ω2
0 = 2s/m. This frequency is spectroscopically observed to be ν0 = 1.32 × 1014 and it lies in the

infrared region of the electromagnetic spectrum. A hydrogen atom weighs 1.67 × 10−27 kg so

s =
m
2
ω2

0 =
4π(1.32 × 1014)2(1.67 × 10−27)

2
= 574Nm−1.

The factor m/2 is a particular case of the ‘reduced mass’ where the two masses (H atoms) are equal. In
general, when the masses are m1 and m2 the reduced mass μ is written

1
μ
=

(
1

m1
+

1
m2

)
=

m1 + m2

m1m2
.

Figure 4.1(b) shows two identical pendulums, each having a mass m suspended on a light rigid rod of
length l. The masses are connected by a light spring of stiffness swhose natural length equals the distance
between the masses when neither is displaced from equilibrium. The small oscillations we discuss are
restricted to the plane of the paper.

If x and y are the respective displacements of the masses, then the equations of motion are

mẍ = −mg
x
l
− s(x − y)

and

mÿ = −mg
y
l
+ s(x − y)

These represent the normal simple harmonic motion terms of each pendulum plus a coupling term s(x−y)
from the spring. We see that if x > y the spring is extended beyond its normal length and will act against
the acceleration of x but in favour of the acceleration of y.

Writing ω2
0 = g/l, where ω0 is the natural vibration frequency of each pendulum, gives

ẍ + ω2
0x = − s

m
(x − y) (4.1)

ÿ + ω2
0y = − s

m
(y − x) (4.2)
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Instead of solving these equations directly for x and y we are going to choose two new coordinates

X = x + y

Y = x − y

The importance of this approach will emerge as this chapter proceeds. Adding equations (4.1) and (4.2)
gives

ẍ + ÿ + ω2
0(x + y) = 0

that is

Ẍ + ω2
0X = 0 (4.1a)

and subtracting (4.2) from (4.1) gives

Ÿ +
(
ω2

0 + 2s/m
)

Y = 0 (4.2a)

The motion of the coupled system is thus described in terms of the two coordinates X and Y, each of
which has an equation of motion which is simple harmonic.

If Y = 0, x = y at all times, so that the motion is completely described by the equation

Ẍ + ω2
0X = 0

then the frequency of oscillation is the same as that of either pendulum in isolation and the stiffness of
the coupling has no effect. This is because both pendulums are always swinging in phase (Figure 4.2a)
and the light spring is always at its natural length.

If X = 0, x = −y at all times, so that the motion is completely described by

Ÿ +
(
ω2

0 + 2s/m
)

Y = 0

The frequency of oscillation is greater because the pendulums are always out of phase (Figure 4.2b) so
that the spring is either extended or compressed and the coupling is effective.

(b) (a) 

l l l l

Figure 4.2 (a) The ‘in phase’ mode of vibration given by Ẍ+ω2
0X = 0, where X is the normal coordinate X = x+y

and ω2
0 = g/l. (b) ‘Out of phase’ mode of vibration given by Ÿ + (ω2

0 + 2s/m) where Y is the normal coordinate
Y = x − y.
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4.2 Normal Modes of Vibration, Normal Coordinates and Degrees of Freedom

The significance of choosing X and Y to describe the motion is that these parameters give a very simple
illustration of Normal Modes.

Equations 4.1a and 4.2a are examples of Normal Modes. A normal mode is characterized by the fact
that all of its components oscillate with the same frequency. Equation 4.1a has a frequency ω0, 4.2a has
a frequency

(
ω2

0 + 2s/m
)1/2

. These frequencies are called normal frequencies or eigen-frequencies.
Each coordinate of a normal mode is called a Normal Coordinate and each Normal Coordinate defines

a degree of freedom, that is, an independent way in which a normal mode acquires energy.
The important property of normal modes of vibration is that they are entirely independent of each

other. The energy associated with a normal mode is never exchanged with another mode; this is why we
can add the energies of the separate modes to give the total energy of a system. If only one mode of our
coupled pendulums is vibrating the other will always remain at rest.

Applying this principle to one simple harmonic oscillation; we associate one degree of freedom with
potential energy, designated by the normal coordinate X and a second degree of freedom with kinetic
energy designated by the velocity normal coordinate Ẋ. The total energy of this normal mode may
therefore be written

Ex = AẊ2 + BX2 (4.3a)

where A and B are constant coefficients, Similarly

Ey = CẎ2 + DY2 (4.3b)

where C and D are constant coefficients.
This is consistent with the usual notation

E =
1
2

mẋ2 + sx2

where m and s are constant.
Our system of two coupled pendulums has, then, four degrees of freedom and four normal coordinates.
Any configuration of our coupled system may be represented by the superposition of the two normal

modes

X = x + y = X0 cos(ω1t + φ1)

and

Y = x − y = Y0 cos(ω2t + φ2)

where X0 and Y0 are the normal mode amplitudes, whilst ω2
1 = g/l and ω2

2 = (g/l + 2s/m) are the
normal mode frequencies. To simplify the discussion let us choose

X0 = Y0 = 2a

and put

φ1 = φ2 = 0
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The pendulum displacements are then given by

x =
1
2
(X + Y) = a cos ω1t + a cos ω2t

and

y =
1
2
(X − Y) = a cos ω1t − a cos ω2t

with velocities

ẋ = −aω1 sinω1t − aω2 sinω2t

and

ẏ = −aω1 sinω1t + aω2 sinω2t

Now let us set the system in motion by displacing the right hand mass a distance x = 2a and releasing
both masses from rest so that ẋ = ẏ = 0 at time t = 0.

Figure 4.3 shows that our initial displacement x = 2a, y = 0 at t = 0 may be seen as a combination of
the ‘in phase’ mode (x = y = a so that x + y = X0 = 2a) and of the ‘out of phase’ mode (x = −y = a
so that Y0 = 2a). After release, the motion of the right-hand pendulum is given by

x = a cosω1t + a cosω2t

= 2a cos
(ω2 − ω1)t

2
cos

(ω1 + ω2)t
2

and that of the left-hand pendulum is given by

y = a cosω1t − a cosω2t

= −2a sin
(ω1 − ω2)t

2
sin

(ω1 + ω2)t
2

= 2a sin
(ω2 − ω1)t

2
sin

(ω1 + ω2)t
2

y = 0 2a a a –a a

X +

+

Y

Figure 4.3 The displacement of one pendulum by an amount 2a is shown as the combination of the two normal
coordinates X + Y.
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Figure 4.4 Behaviour with time of individual pendulums, showing complete energy exchange between the
pendulums as x decreases from 2a to zero whilst y grows from zero to 2a.

If we plot the behaviour of the individual masses by showing how x and y change with time (Figure
4.4), we see that after drawing the first mass aside a distance 2a and releasing it x follows a cosinusoidal
behaviour at a frequency which is the average of the two normal mode frequencies, but its amplitude
varies cosinusoidally with a low frequency which is half the difference between the normal mode fre-
quencies. On the other hand, y, which started at zero, vibrates sinusoidally with the average frequency
but its amplitude builds up to 2a and then decays sinusoidally at the low frequency of half the differ-
ence between the normal mode frequencies. In short, the y displacement mass acquires all the energy
of the x displacement mass which is stationary when y is vibrating with amplitude 2a, but the energy
is then returned to the mass originally displaced. This complete energy exchange is only possible when
the masses are identical and the ratio (ω1 + ω2)/(ω2 − ω1) is an integer, otherwise neither will ever
be quite stationary. The slow variation of amplitude at half the normal mode frequency difference is
the phenomenon of ‘beats’ which occurs between two oscillations of nearly equal frequencies. We shall
discuss this further in the section on wave groups in Chapter 6.

The important point to recognize, however, is that although the individual pendulums may exchange
energy, there is no energy exchange between the normal modes. Figure 4.3 showed the initial configu-
ration x = 2a, y = 0, decomposed into the X and Y modes. The higher frequency of the Y mode ensures
that after a number of oscillations the Y mode will have gained half a vibration (a phase of π rad) on the
X mode; this is shown in Figure 4.5. The combination of the X and Y modes then gives y the value of 2a
and x = 0, and the process is repeated. When Y gains another half vibration then x equals 2a again. The
pendulums may exchange energy; the normal modes do not.

To reinforce the importance of normal modes and their coordinates let us return to equations 4.3(a)
and 4.3(b). If we modify our normal coordinates to read

Xq =
(m

2

)1/2
(x + y) and Yq =

(m
2

)1/2
(x − y)

then we find that the kinetic energy in those equations becomes, after dividing by m

Ek = T = AẊ2 + CẎ2 =
1
2

Ẋ2
q +

1
2

Ẏ2
q (4.4a)
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X

+–––

– Y

2a a a a –ax = 0

Figure 4.5 The faster vibration of the Y mode results in a phase gain of π rad over the X mode of vibration, to
give y = 2a, which is shown here as a combination of the normal modes X − Y.

and the potential energy

V = BX2 + DY2 =
1
2

(g
l

)
X2

q +
1
2

(
g
l
+

2s
m

)
Y2

q

(4.4b)

=
1
2
ω2

0X2
q +

1
2
ω2

s Y2
q ,

where ω2
0 = g/l and ω2

s = g/l + 2s/m.
Note that the coefficients of X2

q and Y2
q depend only on the mode frequencies and that the properties of

individual parts of the system are no longer explicit.
The total energy of the system is the sum of the energies of each separate excited mode for there are

no cross products XqYq in the energy expression of our example, i.e.,

E = T + V =

(
1
2

Ẋ2
q +

1
2
ω2

0X2
q

)
+

(
1
2

Ẏ2
q +

1
2
ω2

s Y2
q

)

Worked Example

In the coupled pendulums of Figure 4.3 let us write the modulated frequency ωm = (ω2 −ω1)/2 and the
average frequency ωa = (ω2 + ω1)/2 and assume that the spring is so weak that it stores a negligible
amount of energy. Let the modulated amplitude

2a cosωmt or 2a sinωmt

be constant over one cycle at the average frequency ωa to show that the energies of the masses may be
written

Ex = 2ma2ω2
a cos

2 ωmt

and

Ey = 2ma2ω2
a sin

2 ωmt

Show that the total energy E remains constant and that the energy difference at any time is

Ex − Ey = E cos(ω2 − ω1)t
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Prove that

Ex =
E
2
[1 + cos(ω2 − ω1)t]

and

Ey =
E
2
[1 − cos(ω2 − ω1)t]

to show that the constant total energy is completely exchanged between the two pendulums at the beat
frequency (ω2 − ω1).

Solution

The pendulum motions in Figure 4.3 are given by

x = 2a cos
(ω2 − ω1)t

2
cos

(ω1 + ω2)t
2

= 2a cosωmt cosωat

and

y = 2a sin
(ω2 − ω1)t

2
sin

(ω1 + ω2)t
2

= 2a sinωmt sinωat

where the amplitudes of the masses 2a cosωmt and 2a sinωmt are constant over one cycle of the frequency
ωa. For small s, we have

g
l
= ω2

1 ≈ ω2
2 ≈

(
ω1 + ω2

2

)2

= ω2
a

so, for sx = mω2
a = mg/l,

Ex =
1
2

sxa
2
x =

1
2

mg
l
(2a cosωmt)2 = 2ma2ω2

a cos
2 ωmt

and

Ey =
1
2

sya2
y =

1
2

mg
l
(2a sinωmt)2 = 2ma2ω2

a sin
2 ωmt

with total energy = Ex + Ey = 2ma2ω2
a because sin2 ωmt + cos2 ωmt = 1.

Since ωm = (ω2 − ω1)/2 then

Ex = 2ma2ω2
a cos

2(ω2 − ω1)t =
E
2
[1 + cos(ω2 − ω1)t]
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H2O

HH H H H H

C

C

C

CO2

ω1 =  7.05 × 1013 sec–1

ω1 =  11 × 1013 sec–1

 ω2 =  4.16 × 1013 sec–1

ω2 =11.27 × 1013 sec–1

ω3 =  2 × 1013 sec–1

ω3 =  4.78 × 1013 sec–1

105°

Figure 4.6 Normal modes of vibration for triatomic molecules CO2 and H2O.

and

Ey = 2ma2ω2
a sin

2(ω2 − ω1)t =
E
2
[1 − cos(ω2 − ω1)t]

Note that the total energy E is completely exchanged at the beat frequency (ω2 −ω1) and that Ex −Ey =
E cos(ω2 − ω1)t.

Atoms in polyatomic molecules behave as the masses of our pendulums; the normal modes of two tri-
atomic molecules CO2 and H2O are shown with their frequencies in Figure 4.6. Normal modes and their
vibrations will occur frequently throughout this book.

4.3 Mass or Inductance Coupling

In a later chapter we shall discuss in detail the propagation of voltage and current waves along a transmis-
sion line which may be considered as a series of coupled oscillators having identical values of inductance
and of capacitance. For the moment we shall consider the energy transfer between two electrical circuits
which are inductively coupled.

A mutual inductance (shared mass) exists between two electrical circuits when the magnetic flux from
the current flowing in one circuit threads the second circuit. Any change of flux induces a voltage in both
circuits.

A transformer depends upon mutual inductance for its operation. The power source is connected to
the transformer primary coil of np turns, over which is wound in the same sense a secondary coil of ns

turns. If unit current flowing in a single turn of the primary coil produces a magnetic flux φ, then the
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flux threading each primary turn (assuming no flux leakage outside the coil) is npφ and the total flux
threading all np turns of the primary is

Lp = n2
pφ

where Lp is the self inductance of the primary coil. If unit current in a single turn of the secondary coil
produces a flux φ, then the flux threading each secondary turn is nsφ and the total flux threading the
secondary coil is

Ls = n2
sφ,

where Ls is the self inductance of the secondary coil.
If all the flux lines from unit current in the primary thread all the turns of the secondary, then the total

flux lines threading the secondary defines the mutual inductance

M = ns (npφ) =
√

LpLs

In practice, because of flux leakage outside the coils, M <
√

LpLs and the ratio

M√
LpLs

= k, the coefficient of coupling.

If the primary current Ip varies with eiωt, a change of Ip gives an induced voltage −LpdIp/dt = −iωLIp

in the primary and an induced voltage −MdIp/dt = −iωMIp in the secondary.
If we consider now the two resistance-free circuits of Figure 4.7, where L1 and L2 are coupled by flux

linkage and allowed to oscillate at some frequency ω (the voltage and current frequency of both circuits),
then the voltage equations are

iωL1I1 − i
1

ωC1
I1 + iωMI2 = 0 (4.5)

and

iωL2I2 − i
1

ωC2
I2 + iωMI1 = 0 (4.6)

where M is the mutual inductance.

C1

M = Mutual inductance

M

C2L1 L2

Figure 4.7 Inductively (mass) coupled LC circuits with mutual inductance M.
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Multiplying (4.5) by ω/iL1 gives

ω2I1 −
I1

L1C1
+

M
L1

ω2I2 = 0

and multiplying (4.6) by ω/iL2 gives

ω2I2 −
I2

L2C2
+

M
L2

ω2I1 = 0,

where the natural frequencies of the circuit ω2
1 = 1/L1C1 and ω2

2 = 1/L2C2 give

(
ω2

1 − ω2
)

I1 =
M
L1

ω2I2 (4.7)

and

(
ω2

2 − ω2
)

I2 =
M
L2

ω2I1 (4.8)

The product of equations (4.7) and (4.8) gives

(
ω2

1 − ω2
) (

ω2
2 − ω2

)
=

M2

L1L2
ω4 = k2ω4, (4.9)

where k is the coefficient of coupling.
Solving for ω gives the frequencies at which energy exchange between the circuits allows the circuits

to resonate. If the circuits have equal natural frequencies ω1 = ω2 = ω0, say, then equation (4.9) becomes

(
ω2

0 − ω2
)2

= k2ω4

or

(
ω2

0 − ω2
)
= ±kω2

that is

ω = ± ω0√
1 ± k

The positive sign gives two frequencies

ω′ =
ω0√
1 + k

and ω′′ =
ω0√
1 − k

at which, if we plot the current amplitude versus frequency, two maxima appear (Figure 4.8).
In loose coupling k and M are small, and ω′ ≈ ω′′ ≈ ω0, so that both systems behave almost inde-

pendently. In tight coupling the frequency difference ω′′ − ω′ increases, the peak values of current
are displaced and the dip between the peaks is more pronounced. In this simple analysis the effect
of resistance has been ignored. In practice some resistance is always present to limit the amplitude
maximum.
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C
ur

re
nt

 a
m

pl
itu

de

Coupling

(a) k large

(b) k intermediate

(c) k small

ω0 ω

(a) (b) (c) 

Figure 4.8 Variation of the current amplitude in each circuit near the resonant frequency. A small resistance
prevents the amplitude at resonance from reaching infinite values but this has been ignored in the simple analysis.
Flattening of the response curve maximum gives ‘frequency band pass’ coupling.

Worked Example

L1

C1

R1

L2

R2

C2

M

E

The two circuits in the diagram are coupled by a variable mutual inductance M and Kirchhoff’s Law
gives

Z1I1 + ZMI2 = E (1)

and

ZMI1 + Z2I2 = 0, ∴ I1 = − Z2

Zm
I2 (2)

where

ZM = +iωM

M is varied at a frequency where the reactance X1 = X2 = 0 to give a maximum value of I2. Show
that the condition for this maximum is ωM =

√
(R1R2) and that this defines a ‘critical coefficient of

coupling’ k = (Q1Q2)
−1/2, where the Q’s are the quality factors of the circuits. Q1 = WL1/R1.
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Solution

Equation (2) into equation (1) gives

− Z1Z2

M
I2 + ZmI2 = E

∴ I2 =
E(

Zm − Z1Z2
M

) I1

Now Zm = iωM and I2 is a maximum when X1 = X2 = 0, that is, when Z1 = R1 and Z2 = R2.
Thus

|I2| =
E∣∣iωM− R1R2

iωM

∣∣ |I1| =
E

ωM + R1R2
ωM

|I1| ≤
E

2
√

ωM R1R2
ωM

=
E

2
√

R1R2
I1

so |I2| has a maximum value of

E

2
√

R1R2
|I1|

when

ωM =
R1R2

ωM
i.e. ωM =

√
R1R2.

k2 =
M2

L1L2
∴ k2

critical =
R1R2

ω2L1L2
=

1
Q1Q2

4.4 Coupled Oscillations of a Loaded String

As a final example involving a large number of coupled oscillators we shall consider a light string sup-
porting n equal masses m spaced at equal distance a along its length. The string is fixed at both ends; it
has a length (n + 1)a and a constant tension T exists at all points and all times in the string.

Small simple harmonic oscillations of the masses are allowed in only one plane and the problem is
to find the frequencies of the normal modes and the displacement of each mass in a particular normal
mode.

This problem was first treated by Lagrange, its particular interest being the use it makes of normal
modes and the light it throws upon the wave motion and vibration of a continuous string to which it
approximates as the linear separation and the magnitude of the masses are progressively reduced.

Figure 4.9 shows the displacement yr of the rth mass together with those of its two neighbours. The
equation of motion of this mass may be written by considering the components of the tension directed
towards the equilibrium position. The rth mass is pulled downwards towards the equilibrium position by
a force T sin θ1 due to the tension on its left and a force T sin θ2 due to the tension on its right where

sin θ1 =
yr − yr−1

a
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yr – yr – 1 yr – yr + 1

yr + 1yr – 1 yr

m

m

m

a

θ1 θ2

a

Figure 4.9 Displacements of three masses on a loaded string under tension T giving equation of motion mÿr =
T(yr+1 − 2yr + yr−1)/a.

and

sin θ2 =
yr − yr+1

a

Hence the equation of motion is given by

m
d2yr

dt2
= −T(sin θ1 + sin θ2)

= −T

(
yr − yr−1

a
+

yr − yr+1

a

)
(4.10a)

so

d2yr

dt2
= ÿr =

T
ma

(yr−1 − 2yr + yr+1) (4.10b)

If, in a normal mode of oscillation of frequency ω, the time variation of yr is simple harmonic about the
equilibrium axis, we may write the displacement of the rth mass in this mode as

yr = Are
iωt

where Ar is the maximum displacement. Similarly yr+1 = Ar+1e
iωt and yr−1 = Ar−1e

iωt. Using these
values of y in the equation of motion gives

−ω2Are
iωt =

T
ma

(Ar−1 − 2Ar + Ar+1) e
iωt

or

−Ar−1 +

(
2 − maω2

T

)
Ar − Ar+1 = 0 (4.11)

This is the fundamental equation.
The procedure now is to start with the first mass r = 1 and move along the string, writing out the set

of similar equations as r assumes the values r = 1, 2, 3, . . . , n remembering that, because the ends are
fixed

y0 = A0 = 0 and yn+1 = An+1 = 0
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Thus, when r = 1 the equation becomes

(
2 − maω2

T

)
A1 − A2 = 0 (A0 = 0)

When r = 2 we have

−A1 +

(
2 − maω2

T

)
A2 − A3 = 0

and when r = n we have

−An−1 +

(
2 − maω2

T

)
An = 0 (An+1 = 0)

Thus, we have a set of n equations which, when solved, will yield n different values of ω2, each value
of ω being the frequency of a normal mode, the number of normal modes being equal to the number of
masses.

The formal solution of this set of n equations involves the theory of matrices. However, we may easily
solve the simple cases for one or two masses on the string (n = 1 or 2 ) and, in addition, it is possible to
show what the complete solution for n masses must be without using sophisticated mathematics.

First, when n = 1, one mass on a string of length 2a, we need only the equation for r = 1 where the
fixed ends of the string give A0 = A2 = 0.

Hence we have
(

2 − maω2

T

)
A1 = 0

giving

ω2 =
2T
ma

a single allowed frequency of vibration (Figure 4.10a).
When n = 2, string length 3a (Figure 4.10b) we need the equations for both r = 1 and r = 2; that is

(
2 − maω2

T

)
A1 − A2 = 0

and

−A1 +

(
2 − maω2

T

)
A2 = 0 (A0 = A3 = 0)

Eliminating A1 or A2 shows that these two equations may be solved (are consistent) when

(
2 − maω2

T

)2

− 1 = 0
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(a) 

(b) 

a

n = 1

n = 2

2T
ma

=

ω1
2

2ω2

ω2

a
m

m m

m

m

A1

A1 = A2

A1 = –A2

A1

A2

A2

T
ma

=

3T
ma=

Figure 4.10 (a) Normal vibration of a single mass m on a string of length 2a at a frequency ω2 = 2T/ma. (b)
Normal vibrations of two masses on a string of length 3a showing the loose coupled ‘in phase’ mode of frequency
ω2

1 = T/ma and the tighter coupled ‘out of phase’ mode of frequency ω2
2 = 3T/ma. The number of normal modes

of vibration equals the number of masses.

that is

(
2 − maω2

T
− 1

)(
2 − maω2

T
+ 1

)
= 0

Thus, there are two normal mode frequencies

ω2
1 =

T
ma

and ω2
2 =

3T
ma

Using the values of ω1 in the equations for r = 1 and r = 2 gives A1 = A2 the slow ‘in phase’
oscillation of Figure 4.10b, whereas ω2 gives A1 = −A2 the faster ‘anti-phase’ oscillation resulting from
the increased coupling.

To find the general solution for any value of n let us rewrite the equation

−Ar−1 +

(
2 − maω2

T

)
Ar − Ar+1 = 0 (4.11)

in the form

Ar−1 + Ar+1

Ar
=

2ω2
0 − ω2

ω2
0

where ω2
0 =

T
ma
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We see that for any particular fixed value of the normal mode frequency ω ( ωj say) the right-hand side
of this equation is constant, independent of r, so the equation holds for all values of r. What values can
we give to Ar which will satisfy this equation, meeting the boundary conditions A0 = An+1 = 0 at the
end of the string?

Let us assume that we may express the amplitude of the rth mass at the frequency ωj as

Ar = Ceirθ

where C is a constant and θ is some constant angle for a given value of ωj. This θ has no relation to θ in
Figure 4.9. The left-hand side of the equation then becomes

Ar−1 + Ar+1

Ar
=

C(ei(r−1)θ + ei(r+1)θ)

Ceirθ
= (e−iθ + eiθ)

= 2 cos θ

which is constant and independent of r.
The value of θj (constant at ωj) is easily found from the boundary conditions

A0 = An+1 = 0 (fixed ends ∴ no cosine terms)

Using sin rθ from eirθ gives

A0 = C sin rθ = 0 (automatically at r = 0)

and

An+1 = C sin(n + 1)θ = 0

when

(n + 1)θj = jπ for j = 1, 2, . . . , n

Hence

θj =
jπ

n + 1

and

Ar = C sin rθj = C sin
rjπ

n + 1

which is the amplitude of the rth mass at the fixed normal mode frequency ωj.
To find the allowed values of ωj we write

Ar−1 + Ar+1

Ar
=

2ω2
0 − ω2

j

ω2
0

= 2 cos θj = 2 cos
jπ

n + 1
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giving

ω2
j = 2ω2

0

[
1 − cos

jπ
n + 1

]
(4.12)

where j may take the values j = 1, 2, . . . , n and ω2
0 = T/ma.

Note that there is a maximum frequency of oscillation ω2
j = 2ω2

0. This is called the ‘cut off’ frequency
and such an upper frequency limit is characteristic of all oscillating systems composed of similar ele-
ments (the masses) repeated periodically throughout the structure of the system. We shall meet this in
the Chapter 6 as a feature of wave propagation in crystals.

To summarize, we have found the normal modes of oscillation of n coupled masses on the string to
have frequencies given by

ω2
j =

2T
ma

[
1 − cos

jπ
n + 1

]
(j = 1, 2, 3 . . . n)

At each frequency ωj the rth mass has an amplitude

Ar = C sin
rjπ

n + 1

where C is a constant.

Worked Example

Vr–1

lr–1 lr

Vr+1

qr–1 qr
qr+1

Vr
L

C C

a

C

a

L

An electrical transmission line consists of equal inductances L and capacitances C arranged as shown.
Using the equations

LdIr−1

dt
= Vr−1 − Vr =

qr−1 − qr

C

and

Ir−1 − Ir =
dqr

dt
,

show that an expression for Ir may be derived which is equivalent to that for yr in the case of the mass-
loaded string.

m
d2yr

dt2
= −T(sin θ1 + sin θ2)

= −T

(
yr − yr−1

a
+

yr − yr+1

a

)
(4.10a)
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(This acts as a low pass electric filter and has a cut-off frequency as in the case of the string. This cut-
off frequency is a characteristic of wave propagation in periodic structures and electromagnetic wave
guides.)

Solution

L
dIr

dt
=

1
C
(qr − qr+1) where L is the inductance.

L
d2Ir

dt2
=

1
C

(
dqr

dt
− dqr+1

dt

)
=

1
C
[(Ir−1 − Ir)− (Ir − Ir+1)]

∴ d2Ir

dt2
=

1
LC

[
(Ir+1 − Ir)

a
− (Ir − Ir−1)

a

]

for each unit a in length.

4.5 The Wave Equation

Finally, in this chapter, we show how the coupled vibrations in the periodic structure of our loaded string
become waves in a continuous medium.

We found the equation of motion of the rth mass to be

d2yr

dt2
=

T
ma

(yr+1 − 2yr + yr−1) (4.10b)

We know also that in a given normal mode all masses oscillate with the same mode frequency ω,
so all yr

′s have the same time dependence. However, as we see in Figure 4.10(b) where A1 and A2 are
anti-phase, the transverse displacement yr also depends upon the value of r; that is, the position of the
rth mass on the string. In other words, yr is a function of two independent variables, the time t and the
location of r on the string.

If we use the separation a ≈ δx and let δx → 0, the masses become closer and we can consider
positions along the string in terms of a continuous variable x and any transverse displacement as y(x, t),
a function of both x and t.

The partial derivative notation ∂y(x, t)/∂t expresses the variation with time of y(x, t) while x is kept
constant.

The partial derivative ∂y(x, t)/∂x expresses the variation with x of y(x, t) while the time t is kept
constant. (Chapter 5 begins with an extended review of this process for students unfamiliar with this
notation.)

In the same way, the second derivative ∂2y(x, t)/∂t2 continues to keep x constant and ∂2y(x, t)/∂x2

keeps t constant.
Recalling that in section 2.2.1 (3) we saw that

deαx

dx
= αeαx

and writing

y = ei(ωt+kx) = eiωteikx
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where we have separated the function of t and x then we have

∂y
∂t

= iωeiωteikx = iωy and
∂2y
∂t2

= −ω2eiωteikx = −ω2y

while

∂y
∂x

= ikeiωteikx = iky and
∂2y
∂x2

= −k2 eiωt eikx = −k2y

If we now locate the transverse displacement yr at a position x = xr along the string, then the left-hand
side of equation (4.10a) becomes

∂2yr

∂t2
→ ∂2y

∂t2
,

where y is evaluated at x = xr and now, as a = δx → 0, we may write xr = x, xr+1 = x + δx and
xr−1 = x − δx with yr(t) → y(x, t), yr+1(t) → y(x + δx, t) and yr−1(t) → y(x − δx, t).

Here we need to explain Taylor’s series which is formally derived in Appendix 2. The definition of
the first differential coefficient of a function f(x) is written

f (x + dx)− f (x)
dx

=
df
dx

We can rearrange this to read

f (x + dx) = f (x) +
df
dx

dx

which is a first approximation to expressing f (x+dx) in terms of f (x). Taylor’s series improves the
approximation by a series of terms each of which is a higher derivative of f (x). That is, from Appendix 2,

f (x + dx) = f (x)0 +

(
df
dx

)
0

dx +
1
2!

(
d2f
dx2

)
0

dx2 +
1
3!

(
d3f
dx3

)
0

dx3

· · · 1
n!

(
dnf
dxn

)
0

dxn

where each of the right-hand terms is evaluated at x0. Each term is smaller than its predecessor so that
the series more accurately represents f (x+dx) in terms of the nearby f (x)0. Here we need only the first
two derivatives. The sign of dx (or δx) may be positive or negative and, in the Taylor series expression,
to express y(x ± δx, t) in terms of partial derivatives of y with respect to x (keeping t constant) we have

y(x ± δx, t) = y(x)± δx
∂y
∂x

+
1
2
(±δx)2 ∂

2y
∂x2



�

�

“Pain-Driver” — 2014/12/30 — 11:24 — page 89 — #21
�

�

�

�

�

�

Coupled Oscillations 89

and equation (4.10a) becomes after substitution

∂2y
∂t2

=
T
m

(
yr+1 − yr

a
− yr − yr−1

a

)

=
T
m

(
y(x + δx)− y(x)

a
− y(x)− y(x − δx)

a

)

=
T
m

(
δx∂y

∂x +
1
2(δx)2 ∂2y

∂x2

δx
−

δx∂y
∂x −

1
2 (δx)2 ∂2y

∂x2

δx

)

so

∂2y
∂t2

=
T
m
(δx)2

δx
∂2y
∂x2

=
T
m
δx

∂2y
∂x2

If we now write m = ρδx where ρ is the linear density (mass per unit length) of the string, the masses
must → 0 as δx → 0 to avoid infinite mass density. Thus, we have

∂2y
∂t2

=
T
ρ

∂2y
∂x2

This is the Wave Equation.
T/ρ has the dimensions of the square of a velocity, the velocity with which the wave, that is, the phase

of oscillation, is propagated. The solution for y at any particular point along the string is always that of
a harmonic oscillation.

Problem 4.1. Show that the choice of new normal coordinates Xq and Yq expresses equations (4.3a) and
(4.3b) as equations (4.4a) and (4.4b).

Problem 4.2. The central vibration mode of the CO2 molecule in Figure 4.6 has a stationary carbon
molecule and an angular frequency of ω = 4.16 × 1013 s−1. The mass of an oxygen atom is 26.56 ×
10−27 kg. Show that the strength of the chemical bond for this mode is 46 Nm−1.

Problem 4.3. Figures 4.3 and 4.5 show how the pendulum configurations x = 2a, y = 0 and x =
0, y = 2a result from the superposition of the normal modes X and Y. Using the same initial conditions
(x = 2a, y = 0, ẋ = ẏ = 0) draw similar sketches to show how X and Y superpose to produce
x = −2a, y = 0 and x = 0, y = −2a.

Problem 4.4.

m1

x1

m2

x2

l
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90 Introduction to Vibrations and Waves

In the figure two masses m1 and m2 are coupled by a spring of stiffness s and natural length 1. If x is the
extension of the spring show that equations of motion along the x axis are

m1ẍ1 = +sx

and

m2ẍ2 = −sx

where

x = x2 − x1

and combine these to show that the system oscillates with a frequency

ω2 =
s
μ
,

where

μ =
m1m2

m1 + m2

is called the reduced mass.
The figure now represents a diatomic molecule as a harmonic oscillator with an effective mass equal

to its reduced mass. If a sodium chloride molecule has a natural vibration frequency = 1.14 × 1013 Hz
(in the infrared region of the electromagnetic spectrum) show that the interatomic force constant
s = 120 Nm−1 (this simple model gives a higher value for s than more refined methods which account
for other interactions within the salt crystal lattice)

Mass of Na atom = 23 a.m.u.

Mass of Cl atom = 35 a.m.u.

1 a.m.u. = 1.67 × 10−27 kg

Problem 4.5. The equal masses in the figure oscillate in the vertical direction. Show that the frequencies
of the normal modes of oscillation are given by

ω2 = (3 ±
√

5)
s

2m

and that in the slower mode the ratio of the amplitude of the upper mass to that of the lower mass is
1
2(
√

5 − 1) whilst in the faster mode this ratio is − 1
2 (
√

5 + 1).
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m

m

s

s

In the calculations it is not necessary to consider gravitational forces because they play no part in the
forces responsible for the oscillation.

Problem 4.6. When the masses of the coupled pendulums of Figure 4.1 are no longer equal the equations
of motion become

m1ẍ = −m1(g/l)x − s(x − y)

and

m2ÿ = −m2(g/l)y + s(x − y)

Show that we may choose the normal coordinates

X =
m1x + m2y
m1 + m2

with a normal mode frequency ω2
1 = g/l and Y = x − y with a normal mode frequency ω2

2 = g/l +
s(1/m1 + 1/m2).

Note that X is the coordinate of the centre of mass of the system whilst the effective mass in the Y
mode is the reduced mass μ of the system where 1/μ = 1/m1 + 1/m2.

Problem 4.7. The diagram shows an oscillatory force Fo cosωt acting on a mass M which is part of
a simple harmonic system of stiffness k and is connected to a mass m by a spring of stiffness s. If all
oscillations are along the x axis show that the condition for M to remain stationary is ω2 = s/m. (This is
a simple version of small mass loading in engineering to quench undesirable oscillations.)

M m

F0 cos 𝜔t

Problem 4.8. The figure below shows two identical LC circuits coupled by a common capacitance C
with the directions of current flow indicated by arrows. The voltage equations are

V1 − V2 = L
dIa

dt
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and

V2 − V3 = L
dIb

dt

whilst the currents are given by

dq1

dt
= −Ia

dq2

dt
= Ia − Ib

and

dq3

dt
= Ib

Solve the voltage equations for the normal coordinates (Ia + Ib) and (Ia − Ib) to show that the normal
modes of oscillation are given by

Ia = Ib at ω2
1 =

1
LC

and

Ia = −Ib at ω2
2 =

3
LC

Note that when Ia = Ib the coupling capacitance may be removed and q1 = −q2. When Ia = −Ib, q2 =
−2q1 = −2q3.

V1

V2

V3
L L

la lb

q1 q2 q3

C C C

Problem 4.9. A generator of e.m.f. E is coupled to a load Z by means of an ideal transformer. From the
diagram, Kirchhoff’s Law gives

E = −e1 = iωLpI1 − iωMI2

and

I2Z2 = e2 = iωMI1 − iωLsI2.

Show that E/I1, the impedance of the whole system seen by the generator, is the sum of the primary
impedance and a ‘reflected impedance’ from the secondary circuit of ω2M2/Zs where Zs = Z2 + iωLs.
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M

l1

Lp Ls

l2

e2
Z2e1

E

Problem 4.10. Show, for the perfect transformer of Problem 4.9, that the impedance seen by the gen-
erator consists of the primary impedance in parallel with an impedance (np/ns)

2Z2, where np and ns are
the number of primary and secondary transformer coil turns respectively.

Problem 4.11. If the generator delivers maximum power when its load equals its own internal
impedance show how an ideal transformer may be used as a device to match a load to a generator,
e.g. a loudspeaker of a few ohms impedance to an amplifier output of 103 Ω impedance.

Problem 4.12. Consider the case when the number of masses on the loaded string of this chapter is
n = 3. Use equation (4.12) to show that the normal mode frequencies are given by

ω2
1 = (2 −

√
2)ω2

0; ω2
2 = 2ω2

0

and

ω2
3 = (2 +

√
2)ω2

0

Problem 4.13. Show that the relative displacements of the masses in the modes of Problem 4.12 are 1 :√
2 : 1, 1: 0 : −1, and 1: −

√
2 : 1. Show by sketching these relative displacements that tighter coupling

increases the mode frequency.

Problem 4.14. Expand the value of

ω2
J =

2T
ma

(
1 − cos

jπ
n + 1

)

when j � n in powers of (j/n + 1) to show that in the limit of very large values of n, a low frequency

ωJ =
jπ
l

√
T
ρ
,

where ρ = m/a and l = (n + 1)a.

Problem 4.15.
Vr–1 Vr+1

qr–1 qr qr+1

Vr

L L

lr–1 lrC CC
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94 Introduction to Vibrations and Waves

An electrical transmission line consists of equal inductances L and capacitances C arranged as shown.
Using the equations

LdIr−1

dt
= Vr−1 − Vr =

qr−1 − qr

C

and

Ir−1 − Ir =
dqr

dt
,

show that an expression for Vr may be derived which is equivalent to that for yr in the case of the mass-
loaded string, equation 4.10a and b. (This acts as a low pass electric filter and has a cut-off frequency
as in the case of the string. This cut-off frequency is a characteristic of wave propagation in periodic
structures and electromagnetic wave guides.) See worked example at the end of section 4.4 Coupled
Oscillations of a Loaded String.

Problem 4.16. Show that

y = eiωteikx

(a) satisfies the wave equation

∂2y
∂t2

= c2∂
2y

∂x2
, if ω = ck

and (b) that

∂

∂x

(
∂y
∂t

)
x

=
∂

∂t

(
∂y
∂x

)
t

= −ωky
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Transverse Wave Motion (1)

Introduction

We started this book with simple harmonic oscillators and ended the last chapter by deriving the wave
equation. These are the tools which we now use in discussing waves. We have seen that the energy of a
simple harmonic oscillator can be transferred by coupling to a neighbour and as we increase the number
of oscillators we end up with a medium through which a wave propagates. In particular, the oscillators or
particles in a medium do not move through the medium but only vibrate about their equilibrium positions
so that what we observe as waves is the changing relative displacements of neighbouring oscillators.

We shall show by treating the string as a forced oscillator how it behaves as a medium with an
impedance which stores wave energy, how power fed into one end of the string propagates and maintains
waves along the string and how the wave energy is distributed along the string.

When the wave meets a boundary between two different impedances some energy is reflected and
some is transmitted. We begin by extending our familiarity with partial differentiation using a range of
different examples.

5.1 Partial Differentiation

From this chapter onwards we shall often need to use the notation of partial differentiation.
When we are dealing with a function of only one variable, y = f (x) say, we write the differential

coefficient

dy
dx

= lim
δx→0

f (x + δx)− f (x)
δx

but if we consider a function of two or more variables, the value of this function will vary with a change
in any or all of the variables. For instance, the value of the coordinate z on the surface of a sphere whose

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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96 Introduction to Vibrations and Waves

equation is x2 + y2 + z2 = a2, where a is the radius of the sphere, will depend on x and y so that z is a
function of x and y written z = z(x, y). The differential change of z which follows from a change of x
and y may be written

dz =

(
∂z
∂x

)
y

dx +

(
∂z
∂y

)
x

dy

where (∂z/∂x)y means differentiating z with respect to x whilst y is kept constant, so that

(
∂z
∂x

)
y

= lim
δx→0

z(x + δx, y)− z(x, y)
δx

The total change dz is found by adding the separate increments due to the change of each variable in
turn whilst the others are kept constant. In Figure 5.1 we can see that keeping y constant isolates a plane
which cuts the spherical surface in a curved line, and the incremental contribution to dz along this line
is exactly as though z were a function of x only. Now by keeping x constant we turn the plane through
90o and repeat the process with y as a variable so that the total increment of dz is the sum of these two
processes.

If only two independent variables are involved, the subscript showing which variable is kept constant
is omitted without ambiguity.

In wave motion our functions will be those of variables of distance and time, and we shall write
∂/∂x and ∂2/∂x2 for the first or second derivatives with respect to x, whilst the time t remains constant.
Again, ∂/∂t and ∂2/∂t2 will denote first and second derivatives with respect to time, implying that x is
kept constant.

Small element of 
spherical surface, radius a
x2+y2+z2 = a2

Plane y = constant

Plane x = constant

z (x) only
gradient (      )∂z

∂xy

x
0

dy

y

dx

dz1

z

dz1

dz2

z (y) only
gradient (      )∂z

∂yx

Figure 5.1 Small element of a spherical surface showing dz = dz1 + dz2 = (∂z/∂x)ydx + (∂z/∂y)xdy where
each gradient is calculated with one variable remaining constant.
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Examples of Partial Differentiation

We now consider the partial differentiation of functions of z where z is itself a function of two variables,
e.g. x and y or x and t, that is

f (z) where z = z(x, y) or z = z(x, t).

The rate of change of f (z) with x if y remains constant is

(
∂f(z)
∂x

)
y

=
df(z)
dz

(
∂z
∂x

)
y

,

that is the change of f (z) with z times the change of z with x with y constant.
Similarly

(
∂f(z)
∂y

)
x

=
df(z)
dz

(
∂z
∂y

)
x

(a) f (z) = z where z = (3x − 2y)

(
∂f(z)
∂x

)
y

=
df(z)
dz

(
∂z
∂x

)
y

= 1 · 3 = 3

(
∂f(z)
∂y

)
x

=
df(z)
dz

(
∂z
∂y

)
x

= 1 · −2 = −2

(b) f (z) = z2 where z = (3x − 2y)

(
∂f(z)
∂x

)
y

=
df(z)
dz

(
∂z
∂x

)
y

= 2z · 3 = 6(3x − 2y)

(
∂f(z)
∂y

)
x

=
df(z)
dz

(
∂z
∂y

)
x

= 2z · −2 = −4(3x − 2y)

(c) f (z) = ez where z = x + iy so ez = ex+iy

(
∂f(z)
∂x

)
y

=
df(z)
dz

(
∂z
∂x

)
y

= ez · 1 = ez = ex+iy

(
∂f(z)
∂y

)
x

=
df(z)
dz

(
∂z
∂y

)
x

= ez · i = i ez = i ex+iy
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The following function is very important in wave motion

(d) f (z) = ez where z = i(ωt − kx)

(
∂f(z)
∂t

)
x

=
df(z)
dz

(
∂z
∂t

)
x

= iωez = iωe(ωt−kx)

(
∂f(z)
∂x

)
t

=
df(z)
dz

(
∂z
∂x

)
t

= −i kez = −i ke(ωt−kx)

5.2 Waves

One of the simplest ways to demonstrate wave motion is to take the loose end of a long rope which
is fixed at the other end and to move the loose end quickly up and down. Crests and troughs of the
waves move down the rope, and if the rope were infinitely long such waves would be called progressive
waves – these are waves travelling in an unbounded medium free from possible reflection (Figure 5.2).

If the medium is limited in extent, for example, if the rope were reduced to a violin string, fixed at
both ends, the progressive waves travelling on the string would be reflected at both ends; the vibration of
the string would then be the combination of such waves moving to and fro along the string and standing
waves would be formed.

Waves on strings are transverse waves where the displacements or oscillations in the medium are
transverse to the direction of wave propagation. When the oscillations are parallel to the direction of
wave propagation the waves are longitudinal. Sound waves are longitudinal waves; a gas can sustain only
longitudinal waves because transverse waves require a shear force to maintain them. Both transverse and
longitudinal waves can travel in a solid.

In this book we are going to discuss plane waves only. When we see wave motion as a series of crests
and troughs we are in fact observing the vibrational motion of the individual oscillators in the medium,
and in particular all of those oscillators in a plane of the medium which, at the instant of observation,
have the same phase in their vibrations. When all the vibrations are restricted to one plane the wave is
said to be plane polarized.

If we take a plane perpendicular to the direction of wave propagation and all oscillators lying within
that plane have a common phase, we shall observe with time how that plane of common phase progresses
through the medium. Over such a plane, all parameters describing the wave motion remain constant. The
crests and troughs are planes of maximum amplitude of oscillation which are π rad out of phase; a crest
is a plane of maximum positive amplitude, while a trough is a plane of maximum negative amplitude.
In formulating such wave motion in mathematical terms we shall have to relate the phase difference
between any two planes to their physical separation in space. We have, in principle, already done this in
our discussion on oscillators.

Trough

Crest

Progressive waves on infinitely long string

Figure 5.2 Progressive transverse waves moving along a string.
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Transverse Wave Motion (1) 99

Spherical waves are waves in which the surfaces of common phase are spheres and the source of
waves is a central point, e.g. an explosion; each spherical surface defines a set of oscillators over which
the radiating disturbance has imposed a common phase in vibration. In practice, spherical waves become
plane waves after travelling a very short distance. A small section of a spherical surface is a very close
approximation to a plane.

5.3 Velocities in Wave Motion

At the outset we must be very clear about one point. The individual oscillators which make up the
medium do not progress through the medium with the waves. Their motion is simple harmonic, limited
to oscillations, transverse or longitudinal, about their equilibrium positions. It is their phase relationships
we observe as waves, not their progressive motion through the medium.

There are three velocities in wave motion which are quite distinct although they are connected
mathematically. They are

(1) The particle velocity, which is the simple harmonic velocity of the oscillator about its equilibrium
position.

(2) The wave or phase velocity, the velocity with which planes of equal phase, crests or troughs,
progress through the medium.

(3) The group velocity. A number of waves of different frequencies, wavelengths and velocities may be
superposed to form a group. Waves rarely occur as single monochromatic components; a white light
pulse consists of an infinitely fine spectrum of frequencies and the motion of such a pulse would
be described by its group velocity. Such a group would, of course, ‘disperse’ with time because the
wave velocity of each component would be different in all media except free space. Only in free
space would it remain as white light. We shall discuss group velocity as a separate topic in Chapter
6. Its importance is that it is the velocity with which the energy in the wave group is transmitted.
For a monochromatic wave the group velocity and the wave velocity are identical. Here we shall
concentrate on particle and wave velocities.

5.4 The Wave Equation

This equation will dominate the rest of this text and we shall derive it, first of all, by considering the
motion of transverse waves on a string.

We shall consider the vertical displacement y of a very short section of a uniform string. This section
will perform vertical simple harmonic motions; it is our simple oscillator. The displacement y will, of
course, vary with the time and also with x, the position along the string at which we choose to observe
the oscillation.

The wave equation therefore will relate the displacement y of a single oscillator to distance x and
time t. We shall consider oscillations only in the plane of the paper, so that our transverse waves on the
string are plane polarized.

The mass of the uniform string per unit length or its linear density is ρ, and a constant tension T exists
throughout the string although it is slightly extensible.

This requires us to consider such a short length and such small oscillations that we may linearize our
equations. The effect of gravity is neglected.
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String
element

Displacement

y

T

θ

θ + dθ

dS

T

x dx x + dx x

Figure 5.3 Displaced element of string of length ds ≈ dx with tension T acting at an angle θ at x and at θ + dθ
at x + dx.

Thus in Figure 5.3 the forces acting on the curved element of length ds are T at an angle θ to the axis
at one end of the element, and T at an angle θ+dθ at the other end. The length of the curved element is

ds =

[
1 +

(
∂y
∂x

)2
]1/2

dx

but within the limitations imposed ∂y/∂x is so small that we ignore its square and take ds = dx. The
mass of the element of string is therefore ρds = ρdx. Its equation of motion is found from Newton’s
Law, force equals mass times acceleration.

The perpendicular force on the element dx is T sin(θ+dθ)−T sin θ in the positive y direction, which
equals the product of ρdx (mass) and ∂2y/∂t2 (acceleration).

Since θ is very small sin θ ≈ tan θ = ∂y/∂x, so that the force is given by

T

[(
∂y
∂x

)
x+dx

−
(
∂y
∂x

)
x

]

where the subscripts refer to the point at which the partial derivative is evaluated. The difference between
the two terms in the bracket defines the differential coefficient of the partial derivative ∂y/∂x times the
space interval dx, so that the force is

T
∂2y
∂x2

dx

The equation of motion of the small element dx then becomes

T
∂2y
∂x2

dx = ρdx
∂2y
∂t2

or

∂2y
∂x2

=
ρ

T
∂2y
∂t2
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giving

∂2y
∂x2

=
1
c2

∂2y
∂t2

where T/ρ has the dimensions of a velocity squared, so c in the preceding equation is a velocity. This is
the wave equation.

It relates the acceleration of a simple harmonic oscillator in a medium to the second derivative of its
displacement with respect to its position, x, in the medium. The position of the term c2 in the equation
is always shown by a rapid dimensional analysis.

So far we have not explicitly stated which velocity c represents. We shall see that it is the wave or
phase velocity, the velocity with which planes of common phase are propagated. In the string the velocity
arises as the ratio of the tension to the inertial density of the string. We shall see, whatever the waves,
that the wave velocity can always be expressed as a function of the elasticity or potential energy storing
mechanism in the medium and the inertia of the medium through which its kinetic or inductive energy is
stored. For longitudinal waves in a solid the elasticity is measured by Young’s modulus, in a gas by γP,
where γ is the specific heat ratio and P is the gas pressure.

5.5 Solution of the Wave Equation

The solution of the wave equation

∂2y
∂x2

=
1
c2

∂2y
∂t2

will, of course, be a function of the variables x and t. We are going to show that any function of the form
y = f1(ct – x) is a solution. Moreover, any function y = f2(ct + x) will be a solution so that, generally,
their superposition y = f1(ct − x) + f2(ct + x) is the complete solution.

If f ′1 represents the differentiation of the function with respect to the bracket (ct – x), then using the
chain rule which also applies to partial differentiation

∂y
∂x

= −f ′1(ct − x)

and

∂2y
∂x2

= f ′′1 (ct − x)

also

∂y
∂t

= cf ′1(ct − x)

and

∂2y
∂t2

= c2f ′′1 (ct − x)
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so that

∂2y
∂x2

=
1
c2

∂2y
∂t2

for y = f1(ct – x). When y = f2(ct + x) a similar result holds.

Worked Example

y = f2(ct + x)

∂y
∂x

= f ′2(ct + x)
∂2y
∂x2

= f ′′2 (ct + x)

∂y
∂t

= cf ′2(ct + x)
∂2y
∂t2

= c2f ′′2 (ct + x)

∴ ∂2y
∂x2

=
1
c2

∂2y
∂t2

If y is the simple harmonic displacement of an oscillator at position x and time t we would expect,
from Chapter 1, to be able to express it in the form y = a sin(ωt − φ), and in fact all of the waves we
discuss in this book will be described by sine or cosine functions.

The bracket (ct – x) in the expression y = f (ct–x) has the dimensions of a length and, for the function
to be a sine or cosine, its argument must have the dimensions of radians so that (ct – x) must be multiplied
by a factor 2π/λ, where λ is a length to be defined.

We can now write

y = a sin(ωt − φ) = a sin
2π
λ
(ct − x)

as a solution to the wave equation if 2πc/λ = ω = 2πν, where ν is the oscillation frequency and
φ = 2πx/λ.

This means that if a wave, moving to the right, passes over the oscillators in a medium and a photograph
is taken at time t = 0, the locus of the oscillator displacements (Figure 5.4) will be given by the expression

a

x

λ

0

D
is

pl
ac

em
en

t y

Figure 5.4 Locus of oscillator displacements in a continuous medium as a wave passes over them travelling in
the positive x direction. The wavelength λ is defined as the distance between any two oscillators having a phase
difference of 2π rad.



�

�

“Pain-Driver” — 2014/12/30 — 11:28 — page 103 — #9
�

�

�

�

�

�

Transverse Wave Motion (1) 103

y = a sin(ωt − φ) = a sin 2π(ct − x)/λ. If we now observe the motion of the oscillator at the position
x = 0 it will be given by y = a sinωt.

Any oscillator to its right at some position x will be set in motion at some later time by the wave
moving to the right; this motion will be given by

y = a sin(ωt − φ) = a sin
2π
λ
(ct − x)

having a phase lag of φ with respect to the oscillator at x = 0. This phase lag φ = 2πx/λ, so that if
x = λ the phase lag is 2π rad that is, equivalent to exactly one complete vibration of an oscillator.

This defines λ as the wavelength, the separation in space between any two oscillators with a phase
difference of 2π rad. The expression 2πc/λ = ω = 2πν gives c = νλ, where c, the wave or phase
velocity, is the product of the frequency and the wavelength. Thus, λ/c = 1/ν = τ , the period of
oscillation, showing that the wave travels one wavelength in this time. An observer at any point would
be passed by ν wavelengths per second, a distance per unit time equal to the velocity c of the wave.

If the wave is moving to the left the sign of φ is changed because the oscillation at x begins before that
at x = 0. Thus, the bracket

(ct − x) denotes a wave moving to the right

and

(ct + x) gives a wave moving in the direction of negative x.

There are several equivalent expressions for y = f (ct− x) which we list here as sine functions, although
cosine functions are equally valid.

They are:

y = a sin
2π
λ
(ct − x)

y = a sin 2π
(
νt − x

λ

)

y = a sinω
(

t − x
c

)
y = a sin(ωt − kx)

where k = 2π/λ = ω/c is called the wave number; also y = aei(ωt−kx), the exponential representation
of both sine and cosine.

Each of the expressions above is a solution to the wave equation giving the displacement of an oscillator
and its phase with respect to some reference oscillator. The changes of the displacements of the oscillators
and the propagation of their phases are what we observe as wave motion.

The wave or phase velocity is, of course, ∂x/∂t, the rate at which the disturbance moves across the
oscillators; the oscillator or particle velocity is the simple harmonic velocity ∂y/∂t.

Choosing any one of the expressions above for a right-going wave, e.g.

y = a sin(ωt − kx)
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we have

∂y
∂t

= ωa cos(ωt − kx)

and

∂y
∂x

= −ka cos(ωt − kx)

so that

∂y
∂t

= −ω

k
∂y
∂x

= −c
∂y
∂x

(
= −∂x

∂t
∂y
∂x

)

The particle velocity ∂y/∂t is therefore given as the product of the wave velocity

c =
∂x
∂t

and the gradient of the wave profile preceded by a negative sign for a right-going wave

y = f (ct − x)

In Figure 5.5 the arrows show the direction of the particle velocity at various points of the right-going
wave. It is evident that the particle velocity increases in the same direction as the transverse force in the
wave and we shall see in the next section that this force is given by

−T∂y/∂x

where T is the tension in the string.

Worked Example

Show that, for a left-going wave

∂y
∂t

= c
∂y
∂x

Solution

A left-going wave is

y = a sin(ωt + kx)

with

∂y
∂x

= +ka cos(ωt + kx)

and

∂y
∂t

= +ωa cos(ωt + kx)
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y

x

x

∂y
∂t

∂y
∂x

= –c

Figure 5.5 The magnitude and direction of the particle velocity ∂y/∂t = −c(∂y/∂x) at any point x is shown by
an arrow in the right-going sine wave above.

so

∂y
∂t

=
ω

k
∂y
∂x

= c
∂y
∂x

c is a magnitude with no sign.

5.6 Characteristic Impedance of a String (the String as a Forced Oscillator)

Any medium through which waves propagate will present an impedance to those waves. If the medium is
lossless, and possesses no resistive or dissipation mechanism, this impedance will be determined by the
two energy storing parameters, inertia and elasticity, and it will be real. The presence of a loss mechanism
will introduce a complex term into the impedance.

A string presents such an impedance to progressive waves and this is defined, because of the nature
of the waves, as the transverse impedance

Z =
transverse force

transverse velocity
=

F
v

The following analysis will emphasize the dual role of the string as a medium and as a forced oscillator.
In Figure 5.6 we consider progressive waves on the string which are generated at one end by an oscil-

lating force, F0e
iωt, which is restricted to the direction transverse to the string and operates only in the
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T

T

x

F0eiωt = –T sin θ

F0eiωt

θ
θ

Figure 5.6 The string as a forced oscillator with a vertical force F0eiωt driving it at one end.

plane of the paper. The tension in the string has a constant value, T , and at the end of the string the
balance of forces shows that the applied force is equal and opposite to T sin θ at all time, so that

F0e
iωt = −T sin θ ≈ −T tan θ = −T

(
∂y
∂x

)

where θ is small.
The displacement of the progressive waves may be represented exponentially by

y = Aei(ωt−kx)

where the amplitude A may be complex because of its phase relation with F. At the end of the string,
where x = 0,

F0e
iωt = −T

(
∂y
∂x

)
x=0

= ikTAei(ωt−k·0)

giving

A =
F0

ikT
=

F0

iω

( c
T

)

and

y =
F0

iω

( c
T

)
ei(ωt−kx)

(since c = ω/k).
The transverse velocity

v = ẏ = F0

( c
T

)
ei(ωt−kx)

where the velocity amplitude v = F0/Z, gives a transverse impedance

Z =
T
c
= ρc(since T = ρc2)

or characteristic impedance of the string.
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Since the velocity c is determined by the inertia and the elasticity, the impedance is also governed by
these properties.

(We can see that the amplitude of displacement y = F0/ωZ, with the phase relationship−iwith respect
to the force, is in complete accord with our discussion in Chapter 3.)

Rate of Wave Energy Transmission along the String

In moving the end of the string vertically up and down to sustain the wave motion along the string, the
power, that is the work rate by the force is F0 e

iωtv where v is the transverse simple harmonic velocity
∂y/∂t, so

F0 e
iωtv = −T

∂y
∂x

∂y
∂t

From the worked example at the end of section 5.5, for a right-going wave we have

∂y
∂t

= −c
∂y
∂x

so the rate of working =

−T
∂y
∂x

∂y
∂t

= −ρc2 ∂y
∂x

∂y
∂t

= ρc

(
∂y
∂t

)2

where c is the phase velocity of the wave.
But ρdx(∂y/∂t)2

max is the total harmonic energy of an elemental length dx of the oscillating string so

F0 e
iωtv = ρc

(
∂y
∂t

)2

max

equals the amount of wave energy travelling down the string per second which is stored and maintained
in the string via its impedance as a medium.

Distribution of Wave Energy along a Vibrating String

A vibrating string possesses both kinetic and potential energy. The kinetic energy of an element of length
dx and linear density ρ is given by

Ekin =
1
2
ρdx

(
∂y
∂t

)2

.

The potential energy is the work done by the tension T in extending an element dx to a new length ds
when the string is vibrating. Thus

Epot = T(ds − dx) = T

⎧⎨
⎩
[

1 +

(
∂y
∂x

)2
] 1

2

− 1

⎫⎬
⎭ dx =

1
2

T

(
∂y
∂x

)2

dx
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E C

C

(b)

(a)
y

x

x

Figure 5.7 Distribution of total energy E in a wave (b) versus wavelengths (a). The wave velocity is c. The peaks
of E coincide with the wave amplitude zeros and the zeros of E coincide with the crests and troughs of the waves.

Provided
(

∂y
∂x

)
in the wave is of the first order of small quantities, the change in T is of the second order

and T may be considered constant. But

1
2

T

(
∂y
∂x

)2

dx =
1
2
ρc2

(
∂y
∂x

)2

dx =
1
2
ρdx

(
∂y
∂t

)2

so the instantaneous values of the kinetic and potential energies in the wave are equal at all points.
In particular their maximum values occur at x = 0 where ∂y/∂t is a maximum and ∂y/∂x has a

maximum and minimum value of ±1.
Note that both ∂y/∂t and ∂y/∂x are zero at the crests and troughs of the waves.
Figure 5.7 shows the total wave energy distribution along wavelengths of the string.
Treating the string as a forced oscillator has allowed us to demonstrate (a) its function as a medium

with an impedance capable of storing wave energy, (b) the rate at which the wave energy propagates in
the medium and (c) the distribution of that energy within the medium.

5.7 Reflection and Transmission of Waves on a String at a Boundary

We have seen that a string presents a characteristic impedance ρc to waves travelling along it, and we
ask how the waves will respond to a sudden change of impedance; that is, of the value ρc. We shall ask
this question of all the waves we discuss, acoustic waves, voltage and current waves and electromagnetic
waves, and we shall find a remarkably consistent pattern in their behaviour.

We suppose that a string consists of two sections smoothly joined at a point x = 0 with a constant
tension T along the whole string. The two sections have different linear densities ρ1 and ρ2, and there-
fore different wave velocities T/ρ1 = c2

1 and T/ρ2 = c2
2. The specific impedances are ρ1c1 and ρ2c2,

respectively.
An incident wave travelling along the string meets the discontinuity in impedance at the position x = 0

in Figure 5.8. At this position, x = 0, a part of the incident wave will be reflected and part of it will be
transmitted into the region of impedance ρ2c2.
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Incident wave

Reflected wave

Transmitted wave

T

T

x = 0

ρ1c1

ρ2c2

Figure 5.8 Waves on a string of impedance ρ1c1 reflected and transmitted at the boundary x = 0 where the
string changes to impedance ρ2c2.

We shall denote the impedance ρ1c1 by Z1 and the impedance ρ2c2 by Z2. We write the displacement
of the incident wave as yi = A1 e

i(ωt−kx), a wave of real (not complex) amplitude A1 travelling in the
positive x direction with velocity c1. The displacement of the reflected wave is yr = B1 e

i(ωt+k1x), of
amplitude B1 and travelling in the negative x direction with velocity c1.

The transmitted wave displacement is given by yt = A2 e
i(ωt−k2x), of amplitude A2 and travelling in

the positive x direction with velocity c2.
We wish to find the reflection and transmission amplitude coefficients; that is, the relative values of

B1 and A2 with respect to A1. We find these via two boundary conditions which must be satisfied at the
impedance discontinuity at x = 0.

The boundary conditions which apply at x = 0 are:

(1) A geometrical condition that the displacement is the same immediately to the left and right of x = 0
for all time, so that there is no discontinuity of displacement.

(2) A dynamical condition that there is a continuity of the transverse force T(∂y/∂x) at x = 0, and
therefore a continuous slope. This must hold, otherwise a finite difference in the force acts on an
infinitesimally small mass of the string giving an infinite acceleration; this is not permitted.

Condition (1) at x = 0 gives

yi + yr = yt

or

A1 e
i(ωt−k1x) + B1 e

i(ωt+k1x) = A2 e
i(ωt−k2x)

At x = 0 we may cancel the exponential terms giving

A1 + B1 = A2 (5.1)

Condition (2) gives

T
∂

∂x
(yi + yr) = T

∂

∂x
yt
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at x = 0 for all t, so that

−k1TA1 + k1TB1 = −k2TA2 (5.1a)

or

−ω
T
c1

A1 + ω
T
c1

B1 = −ω
T
c2

A2 (5.1b)

after cancelling exponentials at x = 0. But T/c1 = ρ1c1 = Z1 and T/c2 = ρ2c2 = Z2, so that

Z1(A1 − B1) = Z2A2 (5.2)

Equations (5.1) and (5.2) give the

Reflection coefficient of amplitude,
B1

A1
=

Z1 − Z2

Z1 + Z2

and the

Transmission coefficient of amplitude,
A2

A1
=

2Z1

Z1 + Z2

We see immediately that these coefficients are independent of ω and hold for waves of all frequencies;
they are real and therefore free from phase changes other than that of π rad which will change the sign
of a term. Moreover, these ratios depend entirely upon the ratios of the impedances. (See summary in
Appendix 8). If Z2 = ∞, this is equivalent to x = 0 being a fixed end to the string because no transmitted
wave exists. This gives B1/A1 = −1, so that the incident wave is completely reflected (as we expect)
with a phase change of π (phase reversal) – conditions we shall find to be necessary for standing waves
to exist. A group of waves having many component frequencies will retain its shape upon reflection at
Z2 = ∞, but will suffer reversal (Figure 5.9). If Z2 = 0, so that x = 0 is a free end of the string, then
B1/A1 = 1 and A2/A1 = 2. This explains the ‘flick’ at the end of a whip or free ended string when a
wave reaches it.

The use of a pulse is a convenient (but artificial) way of showing that the same phase change of all
its component frequencies inverts the shape of the pulse. Without energy input this does not happen in
practice and the pulse changes shape as it travels.

Replacement of Z by k and
√
ρ in Transmission and Reflection Coefficients

Particular wave properties may replace the symbol Z where more convenient in a problem, e.g.
equations 5.1 and 5.1a may be used to show that the reflection coefficient of amplitude

B1

A1
=

k1 − k2

k1 + k2

and the transmission coefficient of amplitude

A2

A1
=

2k1

k1 + k2
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Incident
pulse

Reflected
pulse

ρc

Cʹ

CA

B

Infinite
impedance

Reflection of pulse having many
frequency components

Figure 5.9 A pulse of arbitrary shape is reflected at an infinite impedance with a phase change of π rad, so that
the reflected pulse is the inverted and reversed shape of the initial waveform. The pulse at reflection is divided
in the figure into three sections A, B, and C. At the moment of observation section C has already been reflected
and suffered inversion and reversal to become C′. The actual shape of the pulse observed at this instant is A being
A + B − C′ where B = C′. The displacement at the point of reflection must be zero.

Moreover on a string

T = ρc2 = ρ
ω2

k2

so k ∝ √
ρ gives

B1

A1
=

√
ρ1 −

√
ρ2√

ρ1 +
√
ρ2

and

A2

A1
=

2
√
ρ1√

ρ1 +
√
ρ2

In electromagnetic waves we shall find

Z =
1
n
=

v
c

where n =
c
v

is the refractive index of the material.

Worked Example

A transverse sinusodial wave of amplitude 3.0 cm and wavelength 25 cm travels along a light string of
1 gram · cm−1 mass, which is joined to a heavier string of 4.0 gram · cm−1 mass. The joined strings are
held under constant tension. (a) What is the wavelength and amplitude of the wave as it travels along the
heavier string and (b) what fraction of wave power is reflected at the boundary of the two strings?
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Solution

λ2

λ1
=

√
ρ1

ρ2
∴ λ2 = 12.5 cm.

A2

A1
=

2
√
ρ1√

ρ1 +
√
ρ2

∴ A2 = 2 cm.

B1

A1
=

√
ρ1 −

√
ρ2√

ρ1 +
√
ρ2

= −1
3

∴
(

B1

A1

)2

=
1
9
.

5.8 Reflection and Transmission of Energy

Our interest in waves, however, is chiefly concerned with their function of transferring energy throughout
a medium, and we shall now consider what happens to the energy in a wave when it meets a boundary
between two media of different impedance values.

If we consider each unit length, mass ρ, of the string as a simple harmonic oscillator of maximum

amplitude A, we know that its total energy will be E =
1
2
ρω2A2, where ω is the wave frequency.

The wave is travelling at a velocity c so that as each unit length of string takes up its oscillation with
the passage of the wave the rate at which energy is being carried along the string is

(energy × velocity) =
1
2
ρω2A2c

Thus, the rate of energy arriving at the boundary x = 0 is the energy arriving with the incident wave;
that is

1
2
ρ1c1ω

2A2
1 =

1
2

Z1ω
2A2

1

The rate at which energy leaves the boundary, via the reflected and transmitted waves, is

1
2
ρ1c1ω

2B2
1 +

1
2
ρ2c2ω

2A2
2 =

1
2

Z1ω
2B2

1 +
1
2

Z2ω
2A2

2

which, from the ratio B1/A1 and A2/A1,

=
1
2
ω2A2

1
Z1(Z1 − Z2)

2 + 4Z2
1Z2

(Z1 + Z2)2
=

1
2

Z1ω
2A2

1

Thus, energy is conserved, and all energy arriving at the boundary in the incident wave leaves the
boundary in the reflected and transmitted waves.
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5.9 The Reflected and Transmitted Intensity Coefficients

These are given by

Reflected Energy

Incident Energy
=

Z1B2
1

Z1A2
1

=

(
B1

A1

)2

=

(
Z1 − Z2

Z1 + Z2

)2

Transmitted Energy

Incident Energy
=

Z2A2
2

Z1A2
1

=
4Z1Z2

(Z1 + Z2)2

We see that if Z1 = Z2 no energy is reflected and the impedances are said to be matched.

5.10 Matching of Impedances

We have just seen that at the boundary between two unequal impedances wave energy transport will be
lost due to reflection and only a fraction of the energy will be transmitted. This happens in all media,
on strings, acoustically, in optics, in electrical cables and when light waves enter a dielectric. The solu-
tion is common to all media. It is the insertion of a layer of a medium with an impedance equal to the
harmonic mean of the unmatched impedances having a thickness of λ/4 of a wavelength measured in
the intermediate impedance. Two unmatched impedances Z1 and Z3 are matched when a medium Z2 is
inserted between them, where Z2

2 = Z1Z3 of thickness λ/4 measured in Z2.
We shall prove this statement in section 8.9, Matching Impedances, for the very common example of

electrical cables.

Worked Example

For an electromagnetic wave travelling in a dielectric the impedance equals 1/n where n is the refractive
index

c
v
=

νλ0

νλdielectric

where λ0 is the wavelength in free space.
To avoid reflection a camera lens (n = 1.9) is coated with a λ/4 thickness of a dielectric with refractive

index n2. Calculate the value of n2 and the thickness of the layer if the wavelength in air is 550 nm.

Solution

n2
2 = n1n3 (n1 = 1, n3 = 1.9) ∴ n2 = 1.38

Thickness =
1
4
λair

n2
=

550
4 × 1.38

= 99 nm

5.11 Standing Waves on a String of Fixed Length

We have already seen that a progressive wave is completely reflected at an infinite impedance with a π
phase change in amplitude. A string of fixed length l with both ends rigidly clamped presents an infinite
impedance at each end; we now investigate the behaviour of waves on such a string. Let us consider the
simplest case of a monochromatic wave of one frequency ω with an amplitude a travelling in the positive
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x direction and an amplitude b travelling in the negative x direction. The displacement on the string at
any point would then be given by

y = a ei(ωt−kx) + b ei(ωt+kx)

with the boundary condition that y = 0 at x = 0 and x = l at all times.
The condition y = 0 at x = 0 gives 0 = (a+b) eiωt for all t, so that a = −b. This expresses physically

the fact that a wave in either direction meeting the infinite impedance at either end is completely reflected
with a π phase change in amplitude. This is a general result for all wave shapes and frequencies.

Thus

y = a eiωt(e−ikx − eikx) = (−2i)a eiωt sin kx (5.3)

an expression for y which satisfies the standing wave time-independent form of the wave equation

∂2y/∂x2 + k2y = 0

because (1/c2)(∂2y/∂t2) = (−ω2/c2)y = −k2y. The condition that y = 0 at x = l for all t requires

sin kl = sin
ωl
c

= 0 or
ωl
c

= nπ

limiting the values of allowed frequencies to

ωn =
nπc

l

or

νn =
nc
2l

=
c
λn

that is

l =
nλn

2

giving

sin
ωnx

c
= sin

nπx
l

These frequencies are the normal frequencies or modes of vibration we first met in Chapter 4. They
are often called eigenfrequencies, particularly in wave mechanics.

Such allowed frequencies define the length of the string as an exact number of half wavelengths, and
Figure 5.10 shows the string displacement for the first four harmonics (n = 1, 2, 3, 4). The value for
n = 1 is called the fundamental.

As with the loaded string of Chapter 4, all normal modes may be present at the same time and the gen-
eral displacement is the superposition of the displacements at each frequency. This is a more complicated
problem which we discuss in Chapter 11 (Fourier Methods).



�

�

“Pain-Driver” — 2014/12/30 — 11:28 — page 115 — #21
�

�

�

�

�

�

Transverse Wave Motion (1) 115

n = 1

n = 3

n = 2

n = 4

Figure 5.10 The first four harmonics, n= 1, 2, 3, 4 of the standing waves allowed between the two fixed ends of
a string.

For the moment we see that for each single harmonic n > 1 there will be a number of positions along
the string which are always at rest. These points occur where

sin
ωnx

c
= sin

nπx
l

= 0

or

nπx
l

= rπ (r = 0, 1, 2, 3, . . . n)

The values r = 0 and r = n give x = 0 and x = l, the ends of the string, but between the ends there
are n−1 positions equally spaced along the string in the nth harmonic where the displacement is always
zero. These positions are called nodes or nodal points, being the positions of zero motion in a system
of standing waves. Standing waves arise when a single mode is excited and the incident and reflected
waves are superposed. If the amplitudes of these progressive waves are equal and opposite (resulting
from complete reflection), nodal points will exist. Often, however, the reflection is not quite complete
and the waves in the opposite direction do not cancel each other to give complete nodal points. In this
case we speak of a standing wave ratio which we shall discuss in the next section.

Whenever nodal points exist, however, we know that the waves travelling in opposite directions are
exactly equal in all respects so that the energy carried in one direction is exactly equal to that carried in
the other. This means that the total energy flux, that is, the energy carried across unit area per second in
a standing wave system, is zero.

Returning to equation 5.3, we see that the complete expression for the displacement of the nth harmonic
is given by

yn = 2a(−i)(cosωnt + i sin ωnt) sin
ωnx

c

We can express this in the form

yn = (An cosωnt + Bn sinωnt) sin
ωnx

c
(5.4)

where the amplitude of the nth mode is given by (A2
n + B2

n)
1/2 = 2a.
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5.12 Standing Wave Ratio

When a wave is completely reflected the superposition of the incident and reflected amplitudes will give
nodal points (zero amplitude) where the incident and reflected amplitudes cancel each other, and points
of maximum displacement equal to twice the incident amplitude where they reinforce.

If a progressive wave system is partially reflected from a boundary let the amplitude reflection
coefficient B1/A1 of the earlier section be written as r, where r < 1.

The maximum amplitude at reinforcement is then A1+B1; the minimum amplitude is given by A1−B1.
In this case the ratio of maximum to minimum amplitudes in the standing wave system is called the

Standing Wave Ratio =
A1 + B1

A1 − B1
=

1 + r
1 − r

where r = B1/A1.
Measuring the values of the maximum and minimum amplitudes gives the value of the reflection

coefficient for

r = B1/A1 =
SWR− 1
SWR+ 1

where SWR refers to the Standing Wave Ratio.

Worked Example

A travelling wave y1 = A cos(ωt − kx) combines with the reflected wave y2 = rA cos(ωt + kx) to
produce a standing wave. Show that the standing wave can be represented by y = 2rA cosωt cos kx +
A(1 − r) cos(ωt − kx). Show that SWR= 1+r

1−r .

Solution

At reflection incident wave amplitude is reduced to A(1 − r) and reflected amplitude is rA. At reflec-
tion phase of reflected wave is cos(ωt + kx) + cos(ωt − kx) = 2 cosωt cos kx so reflected wave is
2rA cosωt cos kx and incident wave is A(1 − r) cos(ωt − kx). Max. amplitude = 2rA + A(1 − r) at
antinode of the reflected wave. Max. amplitude = A(1 − r) at node of reflected wave.

SWR =
2rA + A(1 − r)

A(1 − r)
=

1 + r
1 − r

5.13 Energy in Each Normal Mode of a Vibrating String

The total displacement y in the string is the superposition of the displacements yn of the individual
harmonics and we can find the energy in each harmonic by replacing yn for y in the results on the last
page of section 5.11, Standing Waves on a String of Fixed Length. Thus, the kinetic energy in the nth
harmonic is

En(kinetic) =
1
2

l∫
0

ρẏ2
ndx
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for a string of length l and the potential energy is

En(potential) =
1
2

T

l∫
0

(
∂yn

∂x

)2

dx

Since we have already shown for standing waves at the end of section 5.11, Standing Waves on a String
of Fixed Length, that

yn = (An cosωnt + Bn sinωnt) sin
ωnx

c

then

ẏn = (−Anωn sinωnt + Bnωn cosωnt) sin
ωnx

c

and

∂yn

∂x
=

ωn

c
(An cosωnt + Bn sinωnt) cos

ωnx
c

Thus

En(kinetic) =
1
2
ρω2

n[−An sinωnt + Bn cosωnt]2
l∫

0

sin2 ωnx
c

dx

and

En(potential) =
1
2

T
ω2

n

c2
[An cosωnt + Bn sinωnt]2

l∫
0

cos2 ωnx
c

dx

Remembering that T = ρc2 we have

En(kinetic + potential) =
1
4
ρlω2

n(A
2
n + B2

n)

=
1
4

mω2
n(A

2
n + B2

n)

where m is the mass of the string and (A2
n +B2

n) is the square of the maximum displacement (amplitude)
of the mode. To find the exact value of the total energy En of the mode we would need to know the precise
value of An and Bn and we shall evaluate these in Chapter 11 on Fourier Methods. The total energy of
the vibrating string is the sum of all the En’s of the normal modes.

Note that the distribution of energy along the normal mode of a vibration is the same as that of a
travelling wave.
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Problem 5.1. Show that the wave profile, that is,

y = f1(ct − x)

remains unchanged with time when c is the wave velocity. To do this consider the expression for y at a
time t +Δt where Δt = Δx/c.

Repeat the problem for y = f2(ct + x).

Problem 5.2. A triangular shaped pulse of length l is reflected at the fixed end of the string on which it
travels (Z2 = ∞). Sketch the shape of the pulse (see Figure 5.9) after a length (a) l/4, (b) l/2, (c) 3l/4
and (d) l of the pulse has been reflected.

Problem 5.3. An electrically driven oscillator at the end of string propagates a sinusoidal wave along
the string which has a linear density ρ = 30 g ·m−1 and is under a constant tension T = 12 N. What
power is required to sustain a frequency of ν = 300Hz and an amplitude of 1.5 cm? What power is
required if (a) the frequency is doubled and (b) the amplitude is halved?

Problem 5.4. A cello string has a linear density of ρ = 1.7 gm−1 and a length L = 0.7 m. A tension T
in the string times it to 220 Hz. What is T?

Problem 5.5. A point mass M is concentrated at a point on a string of characteristic impedance ρc.
A transverse wave of frequency ω moves in the positive x direction and is partially reflected and trans-
mitted at the mass. The boundary conditions are that the string displacements just to the left and right of
the mass are equal (yi + yr = yt) and that the difference between the transverse forces just to the left and
right of the mass equal the mass times its acceleration. If A1, B1 and A2 are respectively the incident,
reflected and transmitted wave amplitudes the values

B1

A1
=

−iq
1 + iq

and
A2

A1
=

1
1 + iq

where q = ωM/2ρc and i2 = −1. Writing q = tan θ, show that A2 lags A1 by θ and that B1 lags A1 by
(π/2 + θ) for 0 < θ < π/2.

Show also that the reflected and transmitted energy coefficients are represented by sin2 θ and cos2 θ,
respectively.

Problem 5.6. A transverse harmonic force of peak value 0.3 N and frequency 5 Hz initiates waves of
amplitude 0.1 m at one end of a very long string of linear density 0.01 kg/m. Show that the rate of energy
transfer along the string is 3π/20 W and that the wave velocity is 30/π m s−1.

Problem 5.7. The tension in a string produces a fundamental frequency of 440 Hz. (a) What are the
frequencies of the 2nd and 3rd harmonics? (b) The average human ear can register 16,000 kHz. How
many harmonics does this represent? (c) If the violin string is 32 cm long how far from its end should
the string be pressed to shorten its length and produce a fundamental of 523 Hz?

Problem 5.8. The relation between the impedance Z and the refractive index n of a dielectric is given
by Z = 1/n. Light travelling in free space enters a glass lens which has a refractive index of 1.5 for a free
space wavelength of 5.5 × 10−7 m. Show that reflections at this wavelength are avoided by a coating of
refractive index 1.22 and thickness 1.12 × 10−7 m.
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Problem 5.9. Prove that the displacement yn of the standing wave expression in equation (5.4) satisfies
the time-independent form of the wave equation

∂2y
∂x2

+ k2y = 0.

Problem 5.10. The total energy En of a normal mode may be found by an alternative method. Each
section dx of the string is a simple harmonic oscillator with total energy equal to the maximum kinetic
energy of oscillation

k.e.max =
1
2
ρdx(ẏ2

n)max =
1
2
ρdxω2

n(y
2
n)max

Now the value of (y2
n)max at a point x on the string is given by

(y2
n)max = (A2

n + B2
n) sin

2 ωnx
c

Show that the sum of the energies of the oscillators along the string, that is, the integral

1
2
ρω2

n

l∫
0

(y2
n)maxdx

gives the expected result.

Problem 5.11. The displacement of a wave on a string which is fixed at both ends is given by

y(x, t) = A cos (ωt − kx) + rA cos (ωt + kx)

where r is the coefficient of amplitude reflection. Show that this may be expressed as the superposition
of standing waves

y(x, t) = A(1 + r) cosωt cos kx + A(1 − r) sinωt sin kx.
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Transverse Wave Motion (2)

Introduction

Waves are rarely monochromatic, that is, limited to a single frequency, but are usually made of a mixture
of frequencies. First of all we consider the superposition of two waves of equal amplitudes and phase
velocities but with slightly different frequencies. Then the two waves are allowed different phase veloc-
ities and finally multiple waves over a narrow frequency range are superposed to form a pulse. This
leads to the concepts of group velocity, beats, and dispersion. The Bandwidth Theorem is derived and
its connection to Heisenberg’s Uncertainty Principle is explored. The propagation of transverse waves in
a periodic structure such as an ionic crystal explains how infrared radiation is absorbed. The Diffusion
Equation, applied to the periodic structure of a transmission line, is used to account for energy loss in
wave propagation.

6.1 Wave Groups, Group Velocity and Dispersion

Our discussion so far has been limited to monochromatic waves – waves of a single frequency and wave-
length. It is much more common for waves to occur as a mixture of a number or group of component
frequencies; white light, for instance, is composed of a continuous visible wavelength spectrum extend-
ing from about 3000 Å in the blue to 7000 Å in the red. Examining the behaviour of such a group leads
to the third kind of velocity mentioned early in the last chapter, that is, the group velocity.

6.1.1 Superposition of Two Waves of Almost Equal Frequencies

We begin by considering a group which consists of two components of equal amplitude a but frequencies
ω1 and ω2 which differ by a small amount.

Their separate displacements are given by

y1 = a cos (ω1t − k1x)

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com



�

�

“Pain-Driver” — 2014/12/30 — 12:38 — page 122 — #2
�

�

�

�

�

�

122 Introduction to Vibrations and Waves

and

y2 = a cos (ω2t − k2x)

Superposition of amplitude and phase gives

y = y1 + y2 = 2a cos

[
(ω1 − ω2)t

2
− (k1 − k2)x

2

]
cos

[
(ω1 + ω2)t

2
− (k1 + k2)x

2

]

a wave system with a frequency (ω1 + ω2)/2 which is very close to the frequency of either component
but with a maximum amplitude of 2a, modulated in space and time by a very slowly varying envelope
of frequency (ω1 − ω2)/2 and wave number (k1 − k2)/2.

This system is shown in Figure 6.1 and shows a behaviour similar to that of the equivalent coupled
oscillators in Chapter 4. The velocity of the new wave is (ω1−ω2)/(k1−k2) which, if the phase velocities
ω1/k1 = ω2/k2 = c, gives

ω1 − ω2

k1 − k2
= c

(k1 − k2)

k1 − k2
= c

so that the component frequencies and their superposition, or group will travel with the same velocity,
the profile of their combination in Figure 6.1 remaining constant.

If the waves are sound waves the intensity is a maximum whenever the amplitude is a maximum of 2a;
this occurs twice for every period of the modulating frequency; that is, at a frequency ν1 − ν2.

The beats of maximum intensity fluctuations thus have a frequency equal to the difference ν1 − ν2 of
the components. In the example here where the components have equal amplitudes a, superposition will
produce an amplitude which varies between 2a and 0; this is called complete or 100% modulation.

2a

Oscillation of 
frequency ω1 + ω2 

Envelope of 
frequency ω1 – ω2 

2

2

Figure 6.1 The superposition of two waves of slightly different frequency ω1 and ω2 forms a group. The faster
oscillation occurs at the average frequency of the two components (ω1 + ω2)/2 and the slowly varying group
envelope has a frequency (ω1 − ω2)/2, half the frequency difference between the components.
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More generally an amplitude modulated wave may be represented by

y = A cos (ωt − kx)

where the modulated amplitude

A = a + b cos ω′t

This gives

y = a cos (ωt − kx) +
b
2
{cos[(ω + ω′)t − kx] + cos[(ω − ω′)t − kx]}

so that here amplitude modulation has introduced two new frequencies ω ± ω′, known as combination
tones or sidebands. Amplitude modulation of a carrier frequency is a common form of radio transmission,
but its generation of sidebands has led to the crowding of radio frequencies and interference between
stations.

6.1.2 Wave Groups, Group Velocity and Dispersion

Suppose now that the two frequency components of the last section have different phase velocities so
that ω1/k1 �= ω2/k2. The velocity of the maximum amplitude of the group, that is, the group velocity

ω1 − ω2

k1 − k2
=

Δω

Δk

is now different from each of these velocities; the superposition of the two waves will no longer remain
constant and the group profile will change with time.

A medium in which the phase velocity is frequency dependent (ω/k not constant) is known as a disper-
sive medium and a dispersion relation expresses the variation of ω as a function of k. If a group contains
a number of components of frequencies which are nearly equal the original expression for the group
velocity is written

Δω

Δk
=

dω

dk

The group velocity is that of the maximum amplitude of the group so that it is the velocity with which
the energy in the group is transmitted. Since ω = kv, where v is the phase velocity, the group velocity

vg =
dω

dk
=

d

dk
(kv) = v + k

dv
dk

= v − λ
dv
dλ

where k = 2π/λ. Usually dv/dλ is positive, so that vg < v. This is called normal dispersion, but
anomalous dispersion can arise when dv/dλ is negative, so that vg > v.

We shall see when we discuss electromagnetic waves that an electrical conductor is anomalously dis-
persive to these waves whilst a dielectric is normally dispersive except at the natural resonant frequencies
of its atoms. In the chapter on forced oscillations we saw that the wave then acted as a driving force upon
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Gradient

Gradient

Normal 
dispersion

No dispersion

Anomalous 
dispersion(c)

(a)

(b)

ω (k)

V =
k
ω

V =
k
ω dk

k

Vg =
dω

dk
Vg =

dω

Vg > V

Vg = V

Vg < V

Figure 6.2 Curves illustrating dispersion relations: (a) a straight line representing a non-dispersive medium,
v = vg; (b) a normal dispersion relation where the gradient v = ω/k > vg = dω/dk; (c) an anomalous dispersion
relation where v < vg.

the atomic oscillators and that strong absorption of the wave energy was represented by the dissipation
fraction of the oscillator impedance, whilst the anomalous dispersion curve followed the value of the
reactive part of the impedance.

The three curves of Figure 6.2 represent

• A non-dispersive medium where ω/k is constant, so that vg = v, for instance free space behaviour
towards light waves.

• A normal dispersion relation vg < v.
• An anomalous dispersion relation vg > v.

Worked Example

The electric vector of an electromagnetic wave propagates in a dielectric with a velocity v = (με)−1/2

where μ is the permeability and ε is the permittivity. In free space the velocity is that of light, c =
(μ0ε0)

−1/2. The refractive index n = c/v =
√

με/μ0ε0 =
√
μrεr where μr = μ/μ0 and εr = ε/ε0. For

many substances μr is constant and ∼1, but εr is frequency dependent, so that v depends on λ.
The group velocity

υg = v − λdv/dλ = v

(
1 +

λ

2εr

∂εr

∂λ

)

so that vg > v (anomalous dispersion) when ∂εr/∂λ is +ve. Figure 6.3 shows the behaviour of the
refractive index n =

√
εr versus ω, the frequency, and λ, the wavelength, in the region of anomalous

dispersion associated with a resonant frequency. The dotted curve shows the energy absorption (compare
this with Figure 3.11).
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Refractive
index

Absorption
curve

n = √єr

n = 1

n = 2

𝝀 ω0 ω

Figure 6.3 Anomalous dispersion showing the behaviour of the refractive index n =
√
εr versus ω and λ, where

ω0 is a resonant frequency of the atoms of the medium. The absorption in such a region is shown by the dotted
line (see Figure 3.11).

6.2 Wave Group of Many Components. The Bandwidth Theorem

We have so far considered wave groups having only two frequency components. We may easily extend
this to the case of a group of many frequency components, each of amplitude a, lying within the narrow
frequency range Δω.

The essential physics of this problem is shown in Appendix 3, where we find the sum of the series,
with δ as the constant phase difference between n successive equal components to be

R =
n−1∑

0

a cos (ωt + nδ)

Here we are concerned with the constant phase difference (δω)t which results from a constant frequency
difference δω between successive components. The spectrum or range of frequencies of this group is
shown in Figure 6.4a and we wish to follow its behaviour with time.

We seek the amplitude which results from the superposition of the frequency components and
write it

R = a cosω1t + a cos (ω1 + δω)t + a cos (ω1 + 2δω)t + · · ·
+ a cos [ω1 + (n − 1)(δω)]t

The result is given in Appendix 3 as

R = a
sin[n(δω)t/2]
sin[(δω)t/2]

cosωt
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R (t)max = A

R (t) =

ω1 ω
δω

ω

t = 0

t

t = 

Δω

Δω·t

Δt

Δω

Δω·t
A

sin 2

2

2π
π

(b)

(a)

Half width
of maximum

cos t

a

2A

ω

Figure 6.4 A rectangular wave band of width Δω having n frequency components of amplitude a with a com-
mon frequency difference δω. (b) Representation of the frequency band on a time axis is a cosine curve at the
average frequency ω, amplitude modulated by a sinα/α curve where α = Δω · t/2. After a time t = 2π/Δω the
superposition of the components gives a zero amplitude.

where the average frequency in the group or band is

ω = ω1 +
1
2
(n − 1)(δω)

Now n(δω) = Δω, the bandwidth, so the behaviour of the resultant R with time may be written

R(t) = a
sin(Δω · t/2)
sin(Δω · t/n2)

cosωt = na
sin(Δω · t/2)

Δω · t/2
cosωt

when n is large, and

sin(Δω · t/n2) → Δω · t
n2

or

R(t) = A
sinα

α
cosωt

where A = na and α = Δω · t/2 is half the phase difference between the first and last components at
time t.
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This expression gives us the time behaviour of the band and is displayed on a time axis in Figure 6.4b.
We see that the amplitude R(t) is given by the cosine curve of the average frequency ω modified by the
A sinα/α term.

At t = 0, sinα/α → 1 and all the components superpose with zero phase difference to give the
maximum amplitude R(t) = A = na. After some time interval Δt when

α =
ΔωΔt

2
= π

the phases between the frequency components are such that the resulting amplitude R(t) is zero.
The time Δt which is a measure of the width of the central pulse of Figure 6.4b is therefore given by

ΔωΔt
2

= π

or ΔνΔt = 1 where Δω = 2πΔν.
The true width of the base of the central pulse is 2Δt but the intervalΔt is taken as an arbitrary measure

of time, centred about t = 0, during which the amplitude R(t) remains significantly large (>A/2). With
this arbitrary definition the exact expression

ΔνΔt = 1

becomes the approximation

ΔνΔt ≈ 1 or (ΔωΔt ≈ 2π)

and this approximation is known as the Bandwidth Theorem.
It states that the components of a band of width Δω in the frequency range will superpose to produce

a significant amplitude R(t) only for a time Δt before the band decays from random phase differences.
The greater the range Δω the shorter the period Δt.

Alternatively, the theorem states that a single pulse of time durationΔt is the result of the superposition
of frequency components over the range Δω; the shorter the period Δt of the pulse the wider the range
Δω of the frequencies required to represent it.

When Δω is zero we have a single frequency, the monochromatic wave which is therefore required
(in theory) to have an infinitely long time span.

We have chosen to express our wave group in the two parameters of frequency and time (having a prod-
uct of zero dimensions), but we may just as easily work in the other pair of parameters wave number k and
distance x.

Replacing ω by k and t by x would define the length of the wave group as Δx in terms of the range of
component wavelengths Δ(1/λ).

The Bandwidth Theorem then becomes

ΔxΔk ≈ 2π

or

ΔxΔ(1/λ) ≈ 1 i.e. Δx ≈ λ2/Δλ

Note again that a monochromatic wave with Δk = 0 requires Δx → ∞; that is, an infinitely long
wavetrain.
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In the wave group we have just considered the problem has been simplified by assuming all frequency
components to have the same amplitude a. When this is not the case, the different values a(ω) are treated
by Fourier methods as we shall see in Chapter 11.

We shall meet the ideas of this section several times in the course of this text, noting particularly that
in modern physics the Bandwidth Theorem becomes Heisenberg’s Uncertainty Principle.

Worked Example

A pulse of white light has a frequency range Δν between 769 and 384 times 1012 Hz, i.e. Δν ≈ 385 ×
1012 Hz. The Bandwidth Theorem gives ΔνΔt ≈ 1 ∴ Δν = 1/Δt and the coherent length of the
wavetrain of such a pulse is cΔt = c/Δν = 779× 10−9 m, that is, one wavelength at the red end of the
visible spectrum.

6.3 Heisenberg’s Uncertainty Principle

Compton (in 1922–23) fired X-rays of a known frequency at thin foils of different materials and found
that the scattered radiation was independent of the foil material and that his results were consistent only
if momentum and energy were conserved in an elastic collision between two ‘particles’, an electron and
an X-ray of energy hν, rest mass m0 and (from Einstein’s relativistic energy equation) a momentum
p = E/c = hν/c = h/λ where c = νλ and h is Planck’s constant.

In 1924 de Broglie proposed that if the dual wave particle nature of electromagnetic fields (X-rays)
required a particle momentum of p = h/λ it was possible that a wavelength λ of a ‘matter’ field could
be associated with any particle p = mv to give the relation p = h/λ. He showed that the velocity v in mv
was the group velocity of a pulse (not a single frequency) so

p =
h
λ
=

hk
2π

and

Δp =
h

2π
Δk

But the Bandwidth Theorem shows that a group in the wave number range Δk superposed in space over
a distance Δx obeys the relation

ΔxΔk ≈ 2π

so

ΔxΔp ≈ h

This is Heisenberg’s Uncertainty Principle.

This relation sets a fundamental limit on the ultimate precision with which we can know the position x
of a particle and the x component of its momentum simultaneously (Figure 6.5). More advanced
mathematics shows that a ‘wave packet’ of typical shape (Gaussian in Figure 6.5), representing an
electron localized at time t = 0 to within a distance of Δx = 10−10 m (atomic dimensions) with
Δpx = h/Δx ≈ 10−24 kg ·m · s−1 will spread to twice its length in time t = 10−16 sec.
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Wave group

Same group
after time t

x

Δx

Δx

Figure 6.5 A wave group representing a particle showing dispersion after time t. The square of the wave ampli-
tude at any point represents the probability of the particle being in that position, and the dispersion represents the
increasing uncertainty of the particle position with time (Heisenberg’s Uncertainty Principle).

6.4 Transverse Waves in Periodic Structures (1) Waves in a Crystal

At the end of the chapter on coupled oscillations we discussed the normal transverse vibrations of n equal
masses of separation a along a light string of length (n+1)a under a tension T with both ends fixed. The
equation of motion of the rth particle was found to be

mÿr =
T
a
(yr+1 + yr−1 − 2yr) (6.1)

and for n masses the frequencies of the normal modes of vibration were given by

ω2
j =

2T
ma

(
1 − cos

jπ
n + 1

)
(6.2)

where j = 1, 2, 3, . . . , n. When the separation a becomes infinitesimally small (= δx, say) the term in
the equation of motion

1
a
(yr+1 + yr−1 − 2yr) →

1
δx

(yr+1 + yr−1 − 2yr)

=
(yr+1 − yr)

δx
− (yr − yr−1)

δx
=

(
∂y
∂x

)
r+1/2

−
(
∂y
∂x

)
r−1/2

=

(
∂2y
∂x2

)
r

dx

so that the equation of motion becomes

∂2y
∂t2

=
T
ρ

∂2y
∂x2

,

the wave equation, where ρ = m/δx, the linear density and

y ∝ ei(ωt−kx)

We are now going to consider the propagation of transverse waves along a linear array of atoms, mass m,
in a crystal lattice where the tension T now represents the elastic force between the atoms (so that T/a is
the stiffness) and a, the separation between the atoms, is about 1 Å or 10−10 m. When the clamped ends
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of the string are replaced by the ends of the crystal we can express the displacement of the rth particle
due to the transverse waves as

yr = Ar e
i(ωt−kx) = Ar e

i(ωt−kra),

since x = ra. The equation of motion then becomes

−ω2m =
T
a
(eika + e−ika − 2)

=
T
a
(eika/2 − e−ika/2)2 = −4T

a
sin2 ka

2

giving the permitted frequencies

ω2 =
4T
ma

sin2 ka
2

(6.3)

This expression for ω2 is equivalent to our earlier value at the end of Chapter 4:

ω2
j =

2T
ma

(
1 − cos

jπ
n + 1

)
=

4T
ma

sin2 jπ
2(n + 1)

(6.4)

if

ka
2

=
jπ

2(n + 1)

where j = 1, 2, 3, . . . , n.
But (n + 1)a = l, the length of the string or crystal, and we have seen that wavelengths λ are allowed

where pλ/2 = l = (n + 1)a.
Thus

ka
2

=
2π
λ

· a
2
=

πa
λ

=
jaπ

2(n + 1)a
=

j
p
· πa
λ

if j = p. When j = p, a unit change in j corresponds to a change from one allowed number of half
wavelengths to the next so that the minimum wavelength is λ = 2a, giving a maximum frequency
ω2

m = 4T/ma. Thus, both expressions may be considered equivalent.
When λ = 2a, sin ka/2 = 1 because ka = π, and neighbouring atoms are exactly π rad out of phase

because

yr

yr+1
∝ eika = eiπ = −1

The highest frequency is thus associated with maximum coupling, as we expect.
If in equation 6.1 we plot | sin ka/2| against k (Figure 6.6) we find that when ka is increased beyond

π the phase relationship is the same as for a negative value of ka beyond −π. It is, therefore, sufficient
to restrict the values of k to the region

−π

a
≤ k ≤ π

a
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–2π/a –π/a π/a 2π/a
k

0

sin ka/2

Figure 6.6 |sin ka
2 | versus k from equation (6.3) shows the repetition of values beyond the region −π

a ≤ k ≤ π
a ;

this region defines a Brillouin zone.

which is known as the first Brillouin zone. We shall use this concept in the section on electron waves in
solids in Chapter 13.

For long wavelengths or low values of the wave number k, sin ka/2 → ka/2 so that

ω2 =
4T
ma

k2a2

4

and the velocity of the wave is given by

c2 =
ω2

k2
=

Ta
m

=
T
ρ

as before, where ρ = m/a.
In general the phase velocity is given by

v =
ω

k
= c

[
sin ka/2

ka/2

]
(6.5)

a dispersion relation which is shown in Figure 6.7. Only at very short wavelengths does the atomic
spacing of the crystal structure affect the wave propagation, and here the limiting or maximum value of
the wave number km = π/a ≈ 1010 m−1.

The elastic force constant T/a for a crystal is about 15 N m−1; a typical ‘reduced’ atomic mass is
about 60 × 10−27 kg. These values give a maximum frequency

ω2 =
4T
ma

≈ 60
60 × 10−27

= 1027 rad s−1

that is, a frequency ν ≈ 5 × 1012 Hz.
(Note that the value of T/a used here for the crystal is a factor of 8 lower than that found in Problem 4.4

for a single molecule. This is due to the interaction between neighbouring ions and the change in their
equilibrium separation.)

The frequency ν = 5 × 1012 Hz is in the infrared region of the electromagnetic spectrum. We shall
see later that electromagnetic waves of frequency ω have a transverse electric field vector E = E0 e

iωt,
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ωm

km =
k

ω

π
a

Figure 6.7 The dispersion relation ω(k) versus k for waves travelling along a linear one-dimensional array of
atoms in a periodic structure.

where E0 is the maximum amplitude, so that charged atoms or ions in a crystal lattice could respond as
forced oscillators to radiation falling upon the crystal, which would absorb any radiation at the resonant
frequency of its oscillating atoms.

6.5 Linear Array of Two Kinds of Atoms in an Ionic Crystal

We continue the discussion of this problem using a one-dimensional line which contains two kinds
of atoms with separation a as before, those atoms of mass M occupying the odd numbered positions,
2r − 1, 2r + 1, etc. and those of mass m occupying the even numbered positions, 2r, 2r + 2, etc. The
equations of motion for each type are

mÿ2r =
T
a
(y2r+1 + y2r−1 − 2y2r)

and

Mÿ2r+1 =
T
a
(y2r+2 + y2r − 2y2r+1)

with solutions

y2r = Am ei(ωt−2rka)

y2r+1 = AM ei(ωt−(2r+1)ka)

where Am and AM are the amplitudes of the respective masses.
The equations of motion thus become

−ω2mAm =
TAM

a
(e−ika + eika)− 2TAm

a
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Optical branch

m > M

Acoustical
branch

2T
a

1
m

ω

1
2

+
M
1

2T

2a

k

am

2T
aM

1
2

1
2

π

Figure 6.8 Dispersion relations for the two modes of transverse oscillation in a crystal structure.

and

−ω2MAM =
TAm

a
(e−ika + eika)− 2TAM

a

equations which are consistent when

ω2 =
T
a

(
1
m

+
1
M

)
± T

a

[(
1
m

+
1
M

)2

− 4 sin2 ka
mM

]1/2

(6.6)

Plotting the dispersion relation ω versus k for the positive sign and m>M gives the upper curve of
Figure 6.8 with

ω2 =
2T
a

(
1
m

+
1
M

)
for k = 0 (6.7)

and

ω2 =
2T
aM

for km =
π

2a
(minimum λ = 4a)

The negative sign in equation 6.6 gives the lower curve of Figure 6.8 with

ω2 =
2Tk2a2

a(M + m)
for very small k

and

ω2 =
2T
am

for k =
π

2a

The upper curve is called the ‘optical’ branch and the lower curve is known as the ‘acoustical’ branch.
The motions of the two types of atom for each branch are shown in Figure 6.9.
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Acoustical mode

Optical mode

Figure 6.9 The displacements of the different atomic species in the two modes of transverse oscillations in a
crystal structure: (a) the optical mode and (b) the acoustic mode. The black and clear circles represent ions of
opposite charge.

In the optical branch for long wavelengths and small k, Am/AM = −M/m, and the atoms vibrate
against each other, so that the centre of mass of the unit cell in the crystal remains fixed. This motion can
be generated by the action of an electromagnetic wave when alternate atoms are ions of opposite charge;
hence the name ‘optical branch’. In the acoustic branch, long wavelengths and small k give Am = AM ,
and the atoms and their centre of mass move together (as in longitudinal sound waves). We shall see in
the next chapter that the atoms may also vibrate in a longitudinal wave.

The transverse waves we have just discussed are polarized in one plane; they may also vibrate in a
plane perpendicular to the plane considered here. The vibrational energy of these two transverse waves,
together with that of the longitudinal wave to be discussed in the next chapter, form the basis of the
theory of the specific heats of solids.

Absorption of Infrared Radiation by Ionic Crystals

Radiation of frequency 3×1012 Hz. gives an infrared wavelength of 100μm (10−4 m) and a wave number
k = 2π/λ ≈ 6.104 m−1. We found the cut-off frequency in the crystal lattice to give a wave number
km ≈ 1010 m−1, so that the k value of infrared radiation is a negligible quantity relative to km and may
be taken as zero. When the ions of opposite charge ±e move under the influence of the electric field
vector E = E0 e

iωt of electromagnetic radiation, with k = 0 the appropriate frequency of their vibration
becomes the low k limit of the optical branch.

ω2
0 =

2T
a

(
1
m

+
1
M

)
(6.8)

Worked Example

A sodium chloride crystal has a sodium ion Na of mass 23 × 1.66 × 10−27 kg and a chloride ion of
35×1.66×10−27 kg. The value of T/a = 15N ·m−1. At what frequency will it absorb electromagnetic
radiation?

Solution

Using these values in

ω2
0 =

2T
a

(
1
m

+
1
M

)
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gives a value of ν which when converted toλ = c/ν gives a wavelengthλ = 66×10−6 m. Experimentally
sodium chloride is found to absorb strongly at λ = 61 × 10−6 m.

6.6 Transverse Waves in Periodic Structures (2) The Diffusion Equation, Energy Loss from
Wave Systems

Energy loss from waves is not limited to periodic structures but the transmission line units of the worked
example at the end of section 4.4 Coupled Oscillations of a Loaded String, and Problem 4.15 form a
particularly revealing model. There we saw that in the voltage wave equation

∂2V
∂x2

=
1
c2

∂2V
∂t2

the coefficient 1/c2, where c is the wave velocity, depends only on L0 and C0, the energy storing param-
eters. The equation has constant sine or cosine solutions and the wave energy suffers no loss. This ideal
situation changes when loss mechanisms are involved. These arise from particle collisions in the medium
causing loss of mass (diffusion), momentum (friction or viscosity) and energy (thermal conductivity). All
three are non-equilibrium irreversible thermodynamic processes which are unidirectional in the sense that
the equation which describes them has a solution with a decaying exponential which is always directed
to the equilibrium position. This equation, the diffusion equation, is written

∂2V
∂x2

=
1
d
∂V
∂t

where d the diffusivity is always the denominator of the right-hand coefficient (like c2 in the wave
equation). Where the right-hand term ∂2V/∂t2 in the wave equation is an acceleration, the ∂V/∂t in the
diffusion equation is the velocity with which the energy V is moving towards equilibrium, often towards
zero. This velocity is the gradient of the exponential so the greater the distance from equilibrium the
greater the rate of change.

We see from the dimensions of the diffusion equation

V
L2

=
1
d

V
t

that the diffusivity d has the dimension L2/t and this is interpreted as a velocity L/t1/2 (not L/t) or as
a measure of the distance L travelled in time t1/2 when particles collide with each other. A well-known
example is Einstein’s relation for Brownian motion. This incoherent behaviour is known as Random or
Drunk Man’s Walk. The details of this are outlined in Appendix 4 but the principle is as follows. A very
drunk man clings to a lamp post before setting out for home. He lurches 100 steps each of length 1 metre
with no relation between the directions of consecutive steps. The question is, after 100 steps how far is
he from the lamp post? The answer is, statistically, somewhere near or on the circumference of a circle of
radius 10 metres centred on the lamp post. In random processes after n steps (or events) the distance from
the origin is

√
n and not n times the length of each step. This is a well-established rule for non-coherent

processes.
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Worked Example

A localized magnetic field H in an electrically conductive medium of permeability μ and conductivity
σ will diffuse through the medium at a rate given by

∂2H
∂x2

= μσ
∂H
∂t

=
1
d
∂H
∂t

where d is the magnetic diffusivity (μσ)−1. Show that the time of decay of the field in the x direction
is approximately L2μσ where L is the extent of the medium and show that for a copper sphere of radius
1 metre this time t < 100 sec. μ(copper) = 1.26 × 10−6 H ·m−1; σ(copper) = 5.8 × 107 sm−1.

Solution

μσ has dimensions
t

L2
from

∂2H
∂x2

= μσ
∂H
∂t

∴ t = L2μσ = 1.26 × 5.8 × 10 ≈ 73 seconds

If the earth’s core were molten iron its field would freely decay in about 15 × 103 years. In the sun the
local field would take 1010 years to decay.

When σ is very high the local field will change only by the movement of the medium – the field lines
are ‘frozen’ into the medium and they stretch to oppose the motion.

The Wave Equation with Diffusion Effects

We can rarely find waves which propagate free from the energy-loss mechanisms we have been
discussing – the exception being electromagnetic waves in regions of free space. If we try to solve the
equation combining wave and diffusion effects

∂2φ

∂x2
=

1
c2

∂2φ

∂t2
+

1
d
∂φ

∂t

we shall not obtain a pure sine or cosine solution. Let us try the solution

φ = φm ei(ωt−γx)

where φm is the maximum amplitude. This gives

i2γ2 = i2
ω2

c2
+ i

ω

d

or

γ2 =
ω2

c2
− i

ω

d

giving a complex value for γ. But ω2/c2 = k2 where k is the wave number and if we put γ = k − iα we
obtain

γ2 = k2 − 2ikα− α2.

There are two possibilities: k 
 α or α 
 k.
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First of all we consider k 
 α. The solution for φ then becomes

φ = φm ei(ωt−γx) = φm e−αxei(ωt−kx)

i.e. a sine or cosine solution of maximum amplitude φm which decays exponentially with distance. The
physical significance of k = 2π/λ 
 α is that many wavelengths λ are contained in the distance
x = 1/α before the amplitude decays to φm e−1. Energy decays as the square of the amplitude, that is,
as e−2αx. This expression is familiar to us from from Chapter 2 and suggests that an attenuating wave is
a travelling damped simple harmonic oscillator.

When α 
 k,

φ = φm e−αxei(ωt−kx)

where the wave term is quickly extinguished by a rapidly decaying exponential term. In fact, there are no
oscillations. We have a dead beat condition. So we can identify lightly damped wave attenuation with k
and heavily damped diffusion behaviour with α. We shall discuss the reasons for this in the next section.

Energy Loss on a Transmission Line

Let us redraw a unit of the transmission line, Figure 6.10, to include a small resistance R0 per unit
length. Using the worked example at the end of section 4.4 Coupled Oscillations of a Loaded String, and
Problem 4.15, we have

∂V
∂x

= −L0
∂I
∂t


 R0Idx (6.9a)

∂I
∂x

= −C0
∂V
∂t

− V
R0

(6.9b)

Now

∂2I
∂x∂t

=
∂2I
∂t∂x

so applying this to equations 6.9 a and b

∂2V
∂x2

= −L0
∂2I
∂x∂t

(6.10a)

I I +

V +

𝜕I
𝜕x

L0dx R0dx

C0dx

dx

𝜕v
𝜕x

dx

Figure 6.10 Real transmission line unit with small R0.
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and

∂2I
∂t∂x

= −C0
∂2V
∂t2

− 1
R0

∂V
∂t

(6.10b)

then equations 6.10a and 6.10b yield

∂2V
∂x2

= L0C0
∂2V
∂t2

+
L0

R0

∂V
∂t

(6.11)

This is a most important equation. When V is replaced by E or H it describes the behaviour of electro-
magnetic waves in a medium having permeability μ, permittivity ε and conductivity σ replacing L0,C0

and 1/R0 respectively. It displays the important characteristic of electromagnetic waves, proposed by
Maxwell, that the change of voltage (or E or H) is due to the change of two different currents, one
related to L0C0(με) which conserves energy and one involving R0(1/σ) which dissipates energy, the
ohmic current.

The diffusion coefficient

L0

R0
≡ μσ ≡ t

L2

so

1
L2

=
L0

R0t
≈ ωL0

R0

At very high electromagnetic frequencies ωL0 
 R0 so L2, the region of heavy damping, is very
short, much less than one wavelength (see Chapter 9). At the voltage and current wave frequencies on
transmission lines R0 and L0 are precisely manufactured to produce light damping (see Chapter 8).

Problem 6.1. A wave group consists of two wavelengths λ and λ+Δλ where Δλ/λ is very small.
Show that the number of wavelengths λ contained between two successive zeros of the modulating

envelope is ≈ λ/Δλ.

Problem 6.2. The phase velocity v of transverse waves in a crystal of atomic separation a is given by

v = c

(
sin(ka/2)
(ka/2)

)

where k is the wave number and c is constant. Show that the value of the group velocity is

c cos
ka
2

What is the limiting value of the group velocity for long wavelengths?

Problem 6.3. The dielectric constant of a gas at a wavelength λ is given by

εr =
c2

v2
= A +

B
λ2

− Dλ2
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where A, B and D are constants, c is the velocity of light in free space and v is its phase velocity. If the
group velocity is Vg show that

Vgεr = v(A − 2Dλ2)

Problem 6.4. Problem 3.10 shows that the relative permittivity of an ionized gas is given by

εr =
c2

v2
= 1 −

(ωe

ω

)2

where v is the phase velocity, c is the velocity of light and ωe is the constant value of the electron plasma
frequency. Show that this yields the dispersion relation ω2 = ω2

e + c2k2, and that as ω → ωe the phase
velocity exceeds that of light, c, but that the group velocity (the velocity of energy transmission) is always
less than c.

Problem 6.5. The electron plasma frequency of Problem 2.8 is given by

ω2
e =

nee2

meε0
.

Show that for an electron number density ne ∼ 1020 (10−5 of an atmosphere), electromagnetic waves
must have wavelengths λ < 3 × 10−3m (in the microwave region) to propagate. These are typical
wavelengths for probing thermonuclear plasmas at high temperatures.

ε0 = 8.8 × 10−12F m−1

me = 9.1 × 10−31kg

e = 1.6 × 10−19C

Problem 6.6. In relativistic wave mechanics the dispersion relation for an electron of velocity v = �k/m
is given by ω2/c2 = k2 + m2c2/�2, where c is the velocity of light, m is the electron mass (considered
constant at a given velocity) � = h/2π and h is Planck’s constant. Show that the product of the group
and particle velocities is c2.

Problem 6.7. An electron (mass 9.1 × 10−31 kg) accelerated through 1 volt has a kinetic energy of
1.6×1019 J and a momentum of 5.4×10−25 kg ·m · s−1. Show that its de Broglie wavelength is 1.2 nm.

Problem 6.8. The figure shows a pulse of length Δt given by y = A cosω0t.
Show that the frequency representation

y(ω) = a cosω1t + a cos (ω1 + δω)t · · ·+ a cos [ω1 + (n − 1)(δω)]t

is centred on the average frequency ω0 and that the range of frequencies making significant contributions
to the pulse satisfy the criterion

ΔωΔt ≈ 2π

Repeat this process for a pulse of length Δx with y = A cos k0x to show that in k space the pulse is
centred at k0 with the significant range of wave numbers Δk satisfying the criterion ΔxΔk ≈ 2π.
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A

Δt

t

y = A cos ω0 t

Problem 6.9. The elastic force constant for an ionic crystal is ∼15 N m−1. Show that the experimental
value of 71 × 10−6 m for the wavelength of infrared absorption in KCl is in reasonable agreement with
the calculated value.

1 a.m.u. = 1.66 × 10−27kg

K mass = 39 a.m.u.

Cl mass = 35 a.m.u.

Problem 6.10. Light near the blue end of the visible spectrum has a wavelength λ ≈ 4× 10−10 m. The
last section of this chapter showed that the diffusion length in copper is given by

1
L2

= ωμσ

If the light strikes a copper sheet, show that the wave is extinguished in a distance L = 1/10 of λ (blue).
μ(copper) = 1.26 × 10−6 H ·m−1. σ(copper) = 5.8 × 107 s ·m−1.
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Longitudinal Waves

Introduction

In transverse waves the particles in the medium are displaced in a direction perpendicular to the wave
direction. In longitudinal waves the particle displacements and wave directions are parallel. Sound waves
in gases are the most common longitudinal waves. Fluids cannot sustain the transverse shear necessary for
transverse waves. Solids can sustain both longitudinal and transverse waves because compressions can
generate lateral distortions which may maintain transverse forces. One result of this is that earthquakes
produce both transverse and longitudinal waves which radiate from the epicentre in three dimensions.
The longitudinal waves are deeper and faster than the transverse waves which follow as aftershocks.
Waves in deep and shallow water are compared and this chapter ends with the Doppler effect.

7.1 Sound Waves in Gases

Let us consider a fixed mass of gas, which at a pressure P0 occupies a volume V0 with a density ρ0. These
values define the equilibrium state of the gas which is disturbed, or deformed, by the compressions and
rarefactions of the sound waves. Under the influence of the sound waves

the pressure P0 becomes P = P0 + p

the volume V0 becomes V = V0 + v

and

the density ρ0 becomes ρ = ρ0 + ρd.

The excess pressure pm is the maximum pressure amplitude of the sound wave and p is an alternating
component superimposed on the equilibrium gas pressure P0.

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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The fractional change in volume is called the dilatation, written v/V0 = δ, and the fractional change
of density is called the condensation, written ρd/ρ0 = s. The values of δ and s are ≈ 10−3 for ordinary
sound waves, and a value of pm = 2 × 10−5Nm−2 (about 10−10 of an atmosphere) gives a sound wave
which is still audible at 1000 Hz. Thus, the changes in the medium due to sound waves are of an extremely
small order and define limitations within which the wave equation is appropriate.

The fixed mass of gas is equal to

ρ0V0 = ρV = ρ0V0(1 + δ)(1 + s)

so that (1+ δ)(1+ s) = 1, giving s = −δ to a very close approximation. The elastic property of the gas,
a measure of its compressibility, is defined in terms of its bulk modulus

B = − dP
dV/V

= −V
dP
dV

the difference in pressure for a fractional change in volume, a volume increase with fall in pressure
giving the negative sign. The value of B depends on whether the changes in the gas arising from the
wave motion are adiabatic or isothermal. They must be thermodynamically reversible in order to avoid
the energy loss mechanisms of diffusion, viscosity and thermal conductivity. The complete absence of
these random, entropy-generating processes defines an adiabatic process, a thermodynamic cycle with a
100% efficiency in the sense that none of the energy in the wave, potential or kinetic, is lost. In a sound
wave such thermodynamic concepts restrict the excess pressure amplitude; too great an amplitude raises
the local temperature in the gas at the amplitude peaks and thermal conductivity removes energy from
the wave system. Local particle velocity gradients will also develop, leading to diffusion and viscosity.

Using a constant value of the adiabatic bulk modulus limits sound waves to small oscillations since
the total pressure P = P0 + p is taken as constant; larger amplitudes lead to non-linear effects and shock
waves, which we shall discuss separately in Chapter 14.

All adiabatic changes in the gas obey the relation PVγ = constant, where γ is the ratio of the specific
heats at constant pressure and volume, respectively.

Differentiation gives

VγdP + γPVγ−1dV = 0

or

−V dP
dV = γP = Ba (where the subscript a denotes adiabatic)

so that the elastic property of the gas is γP, considered to be constant. Since P = P0 + p, then dP = p,
the excess pressure, giving

Ba = − p
v/V0

or p = −Baδ = Bas

In a sound wave the particle displacements and velocities are along the x axis and we choose the
coordinate η to define the displacement where η(x, t).

In obtaining the wave equation we consider the motion of an element of the gas of thickness Δx and
unit cross section. Under the influence of the sound wave the behaviour of this element is shown in
Figure 7.1. The particles in the layer x are displaced a distance η and those at x + Δx are displaced a
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Px +
Px 𝜕Px Δx

Δx

Δx

Δx + Δη = Δx +

𝜕x

𝜕x
𝜕η

η + Δηη

Figure 7.1 Thin element of gas of unit cross-section and thickness Δx displaced an amount η and expanded by
an amount (δη/∂x)Δx under the influence of a pressure difference −(∂Px/∂x)Δx.

distance η + Δη, so that the increase in the thickness Δx of the element of unit cross section (which
therefore measures the increase in volume) is

Δη =
∂η

∂x
Δx

and

δ =
v

V0
=

(
∂η

∂x

)
Δx/Δx =

∂η

∂x
= −s

where ∂η/δx is called the strain.
The medium is deformed because the pressures along the x axis on either side of the thin element are

not in balance (Figure 7.1). The net force acting on the element is given by

Px − Px+Δx =

[
Px −

(
Px +

∂Px

∂x
Δx

)]

= −∂Px

∂x
Δx = − ∂

∂x
(P0 + p)Δx = −∂p

∂x
Δx

The mass of the element is ρ0Δx and its acceleration is given, to a close approxmation, by ∂2η/dt2.
From Newton’s Law we have

−∂p
∂x

Δx = ρ0Δx
∂2η

∂t2

where

p = −Baδ = −Ba
∂η

∂x
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so that

−∂p
∂x

= Ba
∂2η

∂x2
, giving Ba

∂2η

∂x2
= ρ0

∂2η

∂t2

But Ba/ρ0 = γP/ρ0 is the ratio of the elasticity to the inertia or density of the gas, and this ratio has the
dimensions

force

area
.
velocity

mass
= (velocity)2, so

γP
ρ0

= c2

where c is the sound wave velocity.
Thus

∂2η

∂x2
=

1
c2

∂2η

∂t2

is the wave equation. Writing ηm as the maximum amplitude of displacement we have the following
expressions for a wave in the positive x direction:

η = ηme
i(ωt−kx) η̇ =

∂η

∂t
= iωη

δ =
∂η

∂x
= −ikη = −s (so s = ikη)

p = Bas = iBakη

The phase relationships between these parameters (Figure 7.2a) show that when the wave is in the positive
x direction, the excess pressure p, the fractional density increase s and the particle velocity η̇ are all π/2
rad in phase ahead of the displacement η, whilst the volume change (π rad out of phase with the density

Wave in +ve x
direction

p,s,η̇

p,s

Wave in –ve x
direction

(a) (b)

𝜕η
𝜕x

𝜕η
𝜕x

,

,

δ

δ

η η

η̇

Figure 7.2 Phase relationships between the particle displacement η, particle velocity η̇, excess pressure p
and condensation s = −δ (the dilatation) for waves travelling in the positive and negative x directions. The
displacement η is taken in the positive x direction for both waves.
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change) is π/2 rad behind the displacement. These relationships no longer hold when the wave direction
is reversed (Figure 7.2b); for a wave in the negative x direction

η = ηm ei(ωt+kx) η̇ =
∂η

∂t
= iωη

δ =
∂η

∂x
= +ikη = −s (so s = −ikη)

p = Bas = −iBakη

In both waves the particle displacement η is measured in the positive x direction and the thin element Δx
of the gas oscillates about the value η = 0, which defines its central position. For a wave in the positive
x direction the value η = 0, with η̇ a maximum in the positive x direction, gives a maximum positive
excess pressure (compression) with a maximum condensation sm (maximum density) and a minimum
volume. For a wave in the negative x direction, the same value η = 0, with η̇ a maximum in the positive
x direction, gives a maximum negative excess pressure (rarefaction), a maximum volume and a minimum
density. To produce a compression in a wave moving in the negative x direction the particle velocity η̇
must be a maximum in the negative x direction at η = 0. This distinction is significant when we are
defining the impedance of the medium to the waves. A change of sign is involved with a change of
direction – a convention we shall also have to follow when discussing the waves of Chapters 8 and 9.

7.2 Energy Distribution in Sound Waves

The kinetic energy in the sound wave is found by considering the motion of the individual gas elements
of thickness Δx.

Each element will have a kinetic energy per unit cross section

ΔEkin =
1
2
ρ0Δxη̇2

where η̇ will depend upon the position x of the element. The average value of the kinetic energy density
is found by taking the value of η̇2 averaged over a region of n wavelengths.

Now

η̇ = η̇m sin
2π
λ

(ct − x)

so that

η̇2 =
η̇2

m

∫ nλ
0 sin2 2π(ct − x)/λΔx

nλ
=

1
2
η̇2

m

so that the average kinetic energy density in the medium is

ΔEkin =
1
4
ρ0η̇

2
m =

1
4
ρ0ω

2η2
m

(a simple harmonic oscillator of maximum amplitude a has an average kinetic energy over one cycle of
1
4 mω2a2).
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+p

–p

Work done
in compression

Work done
in rarefaction

–v vV0

P0

Figure 7.3 Shaded triangles show that potential energy pv
2 = pmvm

4 gained by gas in compression equals that
gained in rarefaction when both p and v change sign.

The potential energy density is found by considering the work P dV done on the fixed mass of gas
of volume V0 during the adiabatic changes in the sound wave. This work is expressed for the complete
cycle as

ΔEpot = −
∫

PdV = −−1
2π

∫ 2π

0
pvd(ωt) =

pmvm

2
:

[
p

pm
=

−v
vm

= sin(ωt − kx)

]

The negative sign shows that the potential energy change is positive in both a compression (p positive,
dV negative) and a rarefaction (p negative, dV positive) (Figure 7.3).

The condensation

s =
−
∫
dv

V0
=

−v
V0

= −δ

we write

s
sm

=
−δ

δm
= sin(ωt − kx) and − v = V0s

which, with

p = Bas

gives

ΔEpot =
−1
2π

∫ 2π

0
pvd(ωt) =

BaV0

2π

∫ 2π

0
s2d(ωt)

where s = −δ and the thickness Δx of the element of unit cross section represents its volume V0.
Now

η = ηme
i(ωt±kx)
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so that

δ =
∂η

∂x
= ±1

c
∂η

∂t
, where c =

ω

k

Thus

ΔEpot =
1
2

Ba

c2
η̇2Δx =

1
2
ρ0η̇

2Δx

and its average value over nλ gives the potential energy density

ΔEpot =
1
4
ρ0η̇

2
m = ΔEkin

We see that the average values of the kinetic and potential energy density in the sound wave are equal,
but more important, since the value of each for the element Δx is 1

2ρ0η̇
2Δx, we observe that the element

possesses maximum (or minimum) potential and kinetic energy at the same time. A compression or rar-
efaction produces a maximum in the energy of the element since the value η̇ governs the energy content.
Thus, the energy in the wave is distributed in the wave system with distance as shown in Figure 7.4. Note
that this distribution is non-uniform with distance similar to that for a transverse wave.

Worked Example

Show that in a gas at temperature T the average molecular thermal velocity is approximately equal to the
velocity of sound.

Molecular energy:

1
2

mv2 =
3
2

kT (
1
2

kT for each dimension).

For a mole volume V , N (Avogadro number) and mass M we have

c2 =
γP
ρ

i.e.
γPV
M

(per mole) =
γRT
M

= γNkT = Mc2

∴ c2 per particle = γkT =
5
3

kT

Total
energy
in sound
wave

Distance
x

Figure 7.4 Energy distribution in space for a sound wave in a gas. Both potential and kinetic energies are at a
maximum when the particle velocity η̇ is a maximum and zero at η̇ = 0.
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7.3 Intensity of Sound Waves

This is a measure of the energy flux, the rate at which energy crosses unit area, so that it is the product
of the energy density (kinetic plus potential) and the wave velocity c. Normal sound waves range in
intensity between 10−12 and 1 W m−2, extremely low levels which testify to the sensitivity of the ear.
The roar of a large football crowd greeting a goal will just about heat a cup of coffee.

The intensity may be written

I =
1
2
ρ0cη̇2

m =
1
2
ρ0cω2η2

m = ρ0cη̇2
rms = p2

rms/ρ0c = prmsη̇rms

A commonly used standard of sound intensity is given by

I0 = 10−2W m−2

which is about the level of the average conversational tone between two people standing next to each
other. Shouting at this range raises the intensity by a factor of 100 and in the range 100 I0 to 1000 I0

(10 W m−2) the sound is painful.
Whenever the sound intensity increases by a factor of 10 it is said to have increased by 1 B so the

dynamic range of the ear is about 12 B. An intensity increase by a factor of

100.1 = 1 · 26

increases the intensity by 1 dB, a change of loudness which is just detected by a person with good
hearing. dB is a decibel.

We see that the product ρ0c appears in most of the expressions for the intensity; its significance
becomes apparent when we define the impedance of the medium to the waves as the

Specific Acoustic Impedance =
excess pressure

particle velocity
=

p
η̇
= Z

(the ratio of a force per unit area to a velocity).
Now, for a wave in the positive x direction.

p = Bas = iBakη and η̇ = iωη

so that,

p
η̇
=

Bak
ω

=
Ba

c
= ρ0c = Z+

Thus, the acoustic impedance presented by the medium to these waves, as in the case of the transverse
waves on the string, is given by the product of the density and the wave velocity and is governed by
the elasticity and inertia of the medium. For a wave in the negative x direction, the specific acoustic
impedance

p
η̇
= − iBakη

iωη
= −ρ0C = Z−

with a change of sign because of the changed phase relationship.
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The units of ρ0c are normally stated as kg m−2s−1 in books on practical acoustics; in these units air
has a specific acoustic impedance value of 400, water a value of 1.45×106 and steel a value of 3.9×107.
These values will become more significant when we use them later in examples on the reflection and
transmission of sound waves.

Although the specific acoustic impedance ρ0c is a real quantity for plane sound waves, it has an added
reactive component ik/r for spherical waves, where r is the distance travelled by the wavefront. This
component tends to zero with increasing r as the spherical wave becomes effectively plane.

Worked Example

The velocity of sound in air of density 1.29 kg ·m−3 may be taken as 330 m · s−1. Show that the acoustic
pressure for sound of an intensity of 1 W ·m−2 ≈ 3 × 10−4 of an atmosphere.

Solution

I =
p2
rms

ρ0c
=

p2

2ρ0c

∴ p = (1.29 × 330 × 2)
1
2 ≈ 30N ·m−2

1 Atmosphere ≈ 105 N ·m−2 ∴ p ≈ 3 × 10−4 atmospheres.

7.4 Longitudinal Waves in a Solid

The velocity of longitudinal waves in a solid depends upon the dimensions of the specimen in which the
waves are travelling. If the solid is a thin bar of finite cross section the analysis for longitudinal waves
in a gas is equally valid, except that the bulk modulus Ba is replaced by Young’s modulus Y, the ratio of
the longitudinal stress in the bar to its longitudinal strain.

The wave equation is then

∂2η

∂x2
=

1
c2

∂2η

∂t2
, with c2 =

Y
ρ

A longitudinal wave in a bulk medium compresses the medium and distorts it laterally. Because a solid
can develop a shear force in any direction, such a lateral distortion is accompanied by a transverse shear.
The effect of this upon the wave motion in solids of finite cross section is quite complicated and has been
ignored in the very thin specimen above. In bulk solids, however, the longitudinal and transverse modes
may be considered separately.

We have seen that the longitudinal compression produces a strain ∂η/∂x; the accompanying lateral
distortion produces a strain ∂β/∂y (of opposite sign to ∂η/∂x and perpendicular to the x direction).

Here β is the displacement in the y direction and is a function of both x and y. The ratio of these strains

−∂β

∂y

/
∂η

∂x
= σ
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is known as Poisson’s ratio and is expressed in terms of Lamé’s elastic constants λ and μ for a solid as

σ =
λ

2(λ+ μ)
where λ =

σY
(1 + σ)(1 − 2σ)

These constants are always positive, so that σ < 1
2 , and is commonly ≈ 1

3 . In terms of these constants
Young’s modulus becomes

Y = (λ+ 2μ− 2λσ)

The constant μ is the transverse coefficient of rigidity; that is, the ratio of the transverse stress to the
transverse strain. It plays the role of the elasticity in the propagation of pure transverse waves in a bulk
solid which Young’s modulus plays for longitudinal waves in a thin specimen. Figure 7.5 illustrates the
shear in a transverse plane wave, where the transverse strain is defined by ∂β/∂x. The transverse stress
at x is therefore Tx = μ∂β/∂x. The equation of transverse motion of the thin element dx is then given
by

Tx+dx − Tdx = ρ dxÿ

Where ρ is the density, or

∂

∂x

(
μ
∂β

∂x

)
= ρÿ

but ÿ = ∂2β/∂t2, hence

∂2β

∂x2
=

ρ

μ

∂2β

∂t2

the wave equation with a velocity given by c2 = μ/ρ.

= transverse strain

β(x + dx)

β = β(xy)

𝜕β
𝜕x

x + dxx

β(x)

x

y

Figure 7.5 Shear in a bulk solid producing a transverse wave. The transverse shear strain is ∂β/∂x and the
transverse shear stress is μ∂β/∂x, where μ is the shear modulus of rigidity.
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The effect of the transverse rigidity μ is to stiffen the solid and increase the elastic constant governing
the propagation of longitudinal waves. In a bulk solid the velocity of these waves is no longer given by
c2 = Y/ρ, but becomes

c2 =
λ+ 2μ

ρ

Since Young’s modulus Y =λ+ 2μ− 2λσ, the elasticity is increased by the amount 2λσ≈λ, so that
longitudinal waves in a bulk solid have a higher velocity than the same waves along a thin specimen.

In an isotropic solid, where the velocity of propagation is the same in all directions, the concept of
a bulk modulus, used in the discussion on waves in gases, holds equally well. Expressed in terms of
Lamé’s elastic constants the bulk modulus for a solid is written

B = λ+
2
3
μ = Y[3(1 − 2σ)]−1

the longitudinal wave velocity for a bulk solid becomes

cL =

(
B + (4/3)μ

ρ

)1/2

whilst the transverse velocity remains as

cT =

(
μ

ρ

)1/2

7.5 Application to Earthquakes

The values of these velocities are well known for seismic waves generated by earthquakes. Near the
surface of the earth the longitudinal waves have a velocity of 8 km s−1 and the transverse waves travel
at 4.45 km s−1. The velocity of the longitudinal waves increases with depth until, at a depth of about
1800 miles, no waves are transmitted because of a discontinuity and severe mismatch of impedances
associated with the fluid core.

At the surface of the earth the transverse wave velocity is affected by the fact that stress components
directed through the surface are zero there and these waves, known as Rayleigh Waves, travel with a
velocity given by

c = f (σ)

(
μ

ρ

)1/2

where

f (σ) = 0.9194 when σ = 0·25

and

f (σ) = 0.9553 when σ = 0·5

The energy of the Rayleigh Waves is confined to two dimensions; their amplitude is often much higher
than that of the three-dimensional longitudinal waves and therefore they are potentially more damaging.
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In an earthquake the arrival of the fast longitudinal waves is followed by the Rayleigh Waves and then
by a complicated pattern of reflected waves including those affected by the stratification of the earth’s
structure, known as Love Waves.

Worked Example

An earthquake is felt 6000 kilometres from its epicentre. The first shock is caused by a three-dimensional
wave governed by Young’s modulus with a velocity of 7.5 km·s−1. It is followed by a two-dimensional
transverse Rayleigh wave. If Poisson’s ratio of the earth is 0.3 how much later does the aftershock arrive?

Solution

First shock arrives after 6000/7.5 × 60 = 13.33 minutes from epicentre.

Poisson’s ratio: σ = 0.3 =
λ

2(λ+ μ)
∴ λ

μ
=

3
2

Y
μ

=
λ+ 2μ

μ
=

7
2

∴ cY

cμ
=

(
7
2

) 1
2

= 1.88

time of arrival of aftershock given by

tμ
tY

= 1.88 × 13.33 = 25mins

∴ delay of aftershock = 11mins 27 seconds

7.6 Reflection and Transmission of Sound Waves at Boundaries

When a sound wave meets a boundary separating two media of different acoustic impedances two
boundary conditions must be met in considering the reflection and transmission of the wave. They are
that

(i) the particle velocity η̇

and

(ii) the acoustic excess pressure p

are both continuous across the boundary. Physically this ensures that the two media are in complete
contact everywhere across the boundary.

Figure 7.6 shows that we are considering a plane sound wave travelling in a medium of specific acoustic
impedance Z1 = ρ1c1 and meeting, at normal incidence, an infinite plane boundary separating the first
medium from another of specific acoustic impedance Z2 = ρ2c2. If the subscripts i, r and t denote
incident, reflected and transmitted respectively, then the boundary conditions give

η̇i + η̇r = η̇t (7.1)
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Incident
Transmitted

Reflected

ρ1c1 ρ2c2

Figure 7.6 Incident, reflected and transmitted sound waves at a plane boundary between media of specific
acoustic impedances ρ1c1 and ρ2c2.

and

pi + pr = pt (7.2)

For the incident wave pi = ρ1c1η̇i and for the reflected wave pr = −ρ1c1η̇r, so equation 7.2 becomes

ρ1c1η̇i − ρ1c1η̇r = ρ2c2η̇t

or

Z1η̇i − Z1η̇r = Z2η̇t (7.3)

Eliminating η̇t from (7.1) and (7.3) gives

η̇r
η̇i

=
ωηr
ωηi

=
ηr
ηi

=
Z1 − Z2

Z1 + Z2

Eliminating η̇r from (7.1) and (7.3) gives

η̇t
η̇i

=
ηt
ηi

=
2Z1

Z1 + Z2

Now

pr
pi

= −Z1η̇r
Z1η̇i

=
Z2 − Z1

Z1 + Z2
= − η̇r

η̇i

and

pt
pi

=
Z2η̇t
Z1η̇i

=
2Z2

Z1 + Z2

We see that if Z1 > Z2 the incident and reflected particle velocities are in phase, whilst the incident and
reflected acoustic pressures are out of phase. The superposition of incident and reflected velocities which
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are in phase leads to a cancellation of pressure (a pressure node in a standing wave system). If Z1 < Z2

the pressures are in phase and the velocities are out of phase.
The transmitted particle velocity and acoustic pressure are always in phase with their incident

counterparts.
At a rigid wall, where Z2 is infinite, the velocity η̇t = 0 = η̇i + η̇r, which leads to a doubling of

pressure at the boundary. (See Summary in Appendix 8.)

7.7 Reflection and Transmission of Sound Intensity

The intensity coefficients of reflection and transmission are given by

Ir
Ii

=
Z1(η̇

2
r )rms

Z1(η̇2
i )rms

=

(
Z1 − Z2

Z1 + Z2

)2

and

It
Ii

=
Z2(η̇

2
t )rms

Z1(η̇2
i )rms

=
Z2

Z1

(
2Z1

Z1 + Z2

)2

=
4Z1Z2

(Z1 + Z2)2

The conservation of energy gives

Ir
Ii
+

It
Ii

= 1 or Ii = It + Ir

Worked Example

Show that if waves travelling in water are normally incident on a plane water–ice interface 82.3% of the
energy is transmitted.

(ρc values in kg·m−2·s−1) water = 1.43 × 106 ice= 3.49 × 106

Solution

It

Ii
=

4Z1Z2

(Z1 + Z2)2
=

4 × 1.43 × 3.49
(1.43 + 3.49)2

= 82.3%

The great disparity between the specific acoustic impedance of air on the one hand and water or steel
on the other leads to an extreme mismatch of impedances when the transmission of acoustic energy
between these media is attempted.

There is an almost total reflection of sound wave energy at an air–water interface, independent of the
side from which the wave approaches the boundary. Only 14% of acoustic energy can be transmitted
at a steel–water interface, a limitation which has severe implications for underwater transmission and
detection devices which rely on acoustics.

7.8 Water Waves

In deep water hk� 1 where h is the depth � λ and k is the wave number the particle motion is circular
in the vertical plane. This motion is forwards in the direction of the wave, i.e. clockwise for a right-going
wave just below the crest, and backwards just beneath a trough. With increasing depth the circle diameter
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reduces and the particles become effectively stationary. There are no deep water waves. In shallow water
hk� 1, the circular motion becomes elliptical, retaining a constant horizontal diameter but the vertical
minor axis decreases with depth and flattens near the water bed. Waves near the surface of a non-viscous
incompressible liquid of density ρ have a phase velocity given by

v2(k) =

(
g
k
+

Tk
ρ

)
tanh kh (7.5)

where T is the surface tension and g is the acceleration due to gravity. For deep water, hk � 1,
tanh kh=1. For shallow water hk � 1, tanh kh= k.

Worked Example

Show that when gravity and surface tension are equally important in deep water, the wave velocity is a
minimum at v4 = 4gT/ρ at a ‘critical’ wavelength λc = 2π(T/ρg)

1
2 .

Solution

For deep water we have

v =

(
g
k
+

Tk
ρ

) 1
2

and

dv
dk

=
1
2

(
g
k
+

Tk
ρ

)− 1
2
(
− g

k2
+

T
ρ

)
= 0

when k2 = gρ/T = 4π2/λ2

∴ λc = 2π

√
T
ρg

writing g/k = a = Tk/ρ we have

v2 = 2a = 2
√

a2 = 2

√
g
k

Tk
ρ

∴ v2 = 2

√
gT
ρ

giving v4 =
4Tg
ρ

with k2 =
gρ
T

giving λc.

Putting it in

v2 =

(
g

√
T
ρg

+
T
ρ

√
ρg
T

)
= 2

√
gT
ρ
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confirming

v4
min =

4gT
ρ

.

7.9 Doppler Effect

In the absence of dispersion the velocity of waves sent out by a moving source is constant but the
wavelength and frequency noted by a stationary observer are altered.

In Figure 7.7 a stationary source S emits a signal of frequency ν and wavelength λ for a period t so
the distance to a stationary observer O is νλt. If the source S′ moves towards O at a velocity u during
the period t then O registers a new frequency ν′.

We see that

νλt = ut + νλ′t

which, for

c = νλ = ν′λ′

gives

c − u
ν

= λ′ =
c
ν′

Hence

ν′ =
νc

c − u

This observed change of frequency is called the Doppler Effect.
Suppose that the source S is now stationary but that an observer O′ moves with a velocity v away

from S. If we superimpose a velocity −v on observer, source and waves, we bring the observer to rest;

O

O

S

Sʹ
ut

vtλ

vtλʹ

Figure 7.7 If waves from a stationary source S are received by a stationary observer 0 at frequency ν and wave-
length λ the frequency is observed as ν′ and the wavelength as λ′ at 0 if the source S′ moves during transmission.
This is the Doppler effect.
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the source now has a velocity −v and waves a velocity of c− v. Using these values in the expression for
ν′ gives a new observed frequency

ν′′ =
ν(c − v)

c

Worked Example

Light from a star of wavelength 6×10−7m is found to be shifted 10−11m towards the red when compared
with the same wavelength from a laboratory source. If the velocity of light is 3 × 108 m s−1 show that
the earth and the star are separating at a velocity of 5 km s−1.

Solution

ν′ =
νc

c − u
=

c
λ′ =

c2

λ(c − u)
∴ λ′ =

c − u
c

λ. Red shift ∴ λ′ > λ

Δλ = λ′ − λ = −uλ
c

∴ u = −cΔλ

λ
=

3 × 108 × 10−11

6 × 10−7
= 5Km · s−1

Problem 7.1. Show that the displacement amplitude of an air molecule at a painful sound level of 10
W m−2 at 500 Hz ≈ 6.9 × 10−5m.

Problem 7.2. Barely audible sound in air has an intensity of 10−10I0. Show that the displacement ampli-
tude of an air molecule for sound at this level at 500 Hz is ≈ 10−10m; that is, about the size of the
molecular diameter.

Problem 7.3. Hi-fi equipment is played very loudly at an intensity of 100 I0 in a small room of cross
section 3m× 3m. Show that this audio output is about 10 W.

Problem 7.4. Two sound waves, one in water and one in air, have the same intensity. Show that the ratio
of their pressure amplitudes (pwater/pair) is about 60. When the pressure amplitudes are equal show that
the intensity ratio is ≈ 3 × 10−4.

Problem 7.5. A spring of mass m, stiffness s and length L is stretched to a length L+l. When longitudinal
waves propagate along the spring the equation of motion of a length dx may be written

ρ dx
∂2η

∂t2
=

∂F
∂x

dx

where ρ is the mass per unit length of the spring, η is the longitudinal displacement and F is the restoring
force. Derive the wave equation to show that the wave velocity v is given by

v2 = s(L + l)/ρ

Problem 7.6. A solid has a Poisson’s ratio σ = 0.25. Show that the ratio of the longitudinal wave
velocity to the transverse wave velocity is

√
3. Use the values of these velocities given in the text to

derive an appropriate value of σ for the earth.
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Problem 7.7. Show that when sound waves are normally incident on a plane steel water interface 86%
of the energy is reflected.

(ρc values in kg m−2s−1)

water = 1.43 × 106

steel = 3.9 × 107

Problem 7.8. Use the boundary conditions for standing acoustic waves in a tube to confirm the
following:

Particle displacement Pressure

closed end open end closed end open end
Phase change on reflection 180◦ 0 0 180◦

node antinode antinode node

Problem 7.9. Standing acoustic waves are formed in a tube of length l with (a) both ends open and (b)
one end open and the other closed. If the particle displacement

η = (A cos kx + B sin kx) sinωt

and the boundary conditions are as shown in the diagrams below, show that for

(a) η = A cos kx sinωt with λ = 2l/n

and for

(b) η = A cos kx sinωt with λ = 4l/(2n + 1)

Sketch the first three harmonics for each case.

(a)

= 0 = 0 = 0

ll

η = 0

(b)

𝜕x 𝜕x 𝜕x
𝜕η 𝜕η 𝜕η

Problem 7.10. Some longitudinal waves in a plasma exhibit a combination of electrical and acoustical
phenomena. They obey a dispersion relation at temperature T of ω2 = ω2

e + 3aTk2, where ωe is the
constant electron plasma frequency (See Problem 6.5) and the Boltzmann constant is written as a to
avoid confusion with the wave number k. Show that the product of the phase and group velocities is
related to the average thermal energy of an electron (found from pV = RT).

Problem 7.11. Waves near the surface of a non-viscous incompressible liquid of density ρ have a phase
velocity given by
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v2(k) =

[
g
k
+

Tk
ρ

]
tanh kh (7.4)

where g is the acceleration due to gravity, T is the surface tension, k is the wave number and h is the
liquid depth. When h � λ the liquid is shallow; when h � λ the liquid is deep.

(a) The condition λ � λc defines a gravity wave, and surface tension is negligible. Show that gravity
waves in a shallow liquid are non-dispersive with a velocity v =

√
gh.

(b) Show that gravity waves in a deep liquid have a phase velocity v =
√

g/k and a group velocity of
half this value.

(c) The condition λ < λc defines a ripple (dominated by surface tension). Show that short ripples in
a deep liquid have a phase velocity v =

√
Tk/ρ and a group velocity of 3

2 v. (Note the anomalous
dispersion.)

Problem 7.12. Show that, in the Doppler effect, the change of frequency noted by a stationary observer
O as a moving source S′ passes him is given by

Δν =
2νcu

(c2 − u2)

where c = νλ, the signal velocity and u is the velocity of S′.

Problem 7.13. Suppose, in the Doppler effect, that a source S′ and an observer O′ move in the same
direction with velocities u and v, respectively. Bring the observer to rest by superimposing a velocity −v
on the system to show that O′ now registers a frequency

ν′′′ =
ν(c − v)
(c − u)

Problem 7.14. An aircraft flying on a level course transmits a signal of 3 × 109 Hz which is reflected
from a distant point ahead on the flight path and received by the aircraft with a frequency difference of
15 kHz. What is the aircraft speed?

Problem 7.15. Light from hot sodium atoms is centred about a wavelength of 6 × 10−7m but spreads
2× 10−12m on either side of this wavelength due to the Doppler effect as radiating atoms move towards
and away from the observer. Calculate the thermal velocity of the atoms to show that the gas temperature
is ∼ 900 K.

Problem 7.16. Show that in the Doppler effect when the source and observer are not moving in the
same direction the frequencies

ν′ =
νc

c − u′ , ν′′ =
ν(c − v)

c

and

ν′′′ = ν

(
c − v
c − u

)

are valid if u and v are not the actual velocities but the components of these velocities along the direction
in which the waves reach the observer.
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Waves on Transmission Lines

Introduction

In the wave motion discussed so far four major points have emerged. They are

(1) Individual particles in the medium oscillate about their equilibrium positions with simple harmonic
motion but do not propagate through the medium.

(2) Crests and troughs and all planes of equal phase are transmitted through the medium to give the
wave motion.

(3) The wave or phase velocity is governed by the product of the inertia of the medium and its capacity
to store potential energy; that is, its elasticity.

(4) The impedance of the medium to this wave motion is governed by the ratio of the inertia to the
elasticity (see Appendix 8).

In this chapter we wish to investigate the wave propagation of voltages and currents and we shall see
that the same physical features are predominant. Voltage and current waves are usually sent along a
geometrical configuration of wires and cables known as transmission lines. The physical scale or order of
magnitude of these lines can vary from that of an oscilloscope cable on a laboratory bench to the electric
power distribution lines supported on pylons over hundreds of miles or the submarine telecommunication
cables lying on an ocean bed.

Any transmission line can be simply represented by a pair of parallel wires into one end of which power
is fed by an a.c. generator. Figure 8.1a shows such a line at the instant when the generator terminal A
is positive with respect to terminal B, with current flowing out of the terminal A and into terminal B as
the generator is doing work. A half cycle later the position is reversed and B is the positive terminal,
the net result being that along each of the two wires there will be a distribution of charge as shown,
reversing in sign at each half cycle due to the oscillatory simple harmonic motion of the charge carriers
(Figure 8.1b). These carriers move a distance equal to a fraction of a wavelength on either side of their
equilibrium positions. As the charge moves current flows, having a maximum value where the product
of charge density and velocity is greatest.

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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(a)

(b)

(c)

period later

Energy
flow

Energy
flow

Oscillatory motion
of charge carriers

Generator

Generator

Oscillator

Voltage
       wave

Voltage
  wave

Standing waves

Lecher wires

Neon lamp
glows brightly
at voltage maxima

Inductive
coupling

Vmax
Vmax Vmax

VmaxVmaxVmax

A

B

Figure 8.1 Power fed continuously by a generator into an infinitely long transmission line. Charge distribution
and voltage waves for (a) generator terminal positive at A and (b) a half period later, generator terminal positive
at B. Laboratory demonstration (c) of voltage maxima along a Lecher wire system. The neon lamp glows when
held near a position of Vmax of a standing wave.

The existence along the cable of maximum and minimum current values varying simple harmonically
in space and time describes a current wave along the cable. Associated with these currents there are
voltage waves (Figure 8.1a), and if the voltage and current at the generator are always in phase then
power is continuously fed into the transmission line and the waves will always be carrying energy away
from the generator. In a laboratory the voltage and current waves may be shown on a Lecher wire sysem
(Figure 8.1c).

In deriving the wave equation for both voltage and current to obtain the velocity of wave propagation
we shall concentrate our attention on a short element of the line having a length very much less than that
of the waves. Over this element we may consider the variables to change linearly to the first order and
we can use differentials.

The currents which flow will generate magnetic flux lines which thread the region between the cables,
giving rise to a self inductance L0 per unit length measured in henries per metre. Between the lines, which
form a capacitor, there is an electrical capacitance C0 per unit length measured in farads per metre. In the
absence of any resistance in the line these two parameters completely describe the line, which is known
as ideal or lossless.
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8.1 Ideal or Lossless Transmission Line

Figure 8.2 represents a short element of zero resistance of an ideal transmission line length dx�λ (the
voltage or current wavelength). The self inductance of the element is L0 dx and its capacitance is C0 dx F.

If the rate of change of voltage per unit length at constant time is ∂V/∂x, then the voltage difference
between the ends of the element dx is ∂V/∂x dx, which equals the voltage drop from the self inductance
−(L0 dx)∂I/∂t.

Thus

∂V
∂x

dx = −(L0 dx)
∂I
∂t

or

∂V
∂x

= −L0
∂I
∂t

(8.1)

If the rate of change of current per unit length at constant time is ∂I/∂x there is a loss of current along
the length dx of −∂I/∂x dx because some current has charged the capacitance C0 dx of the line to a
voltage V .

If the amount of charge is q = (C0 dx)V ,

dI =
dq
dt

=
∂

∂t
(C0 dx)V

so that

−∂I
∂x

dx =
∂

∂t
(C0 dx)V

or

−∂I
∂x

= C0
∂V
∂t

(8.2)

Since ∂2/∂x∂t = ∂2/∂t ∂x it follows, by taking ∂/∂x of equation (8.1) and ∂/∂t of equation (8.2), that

∂2V
∂x2

= L0C0
∂2V
∂t2

(8.3)

a pure wave equation for the voltage with a velocity of propagation given by v2 = 1/L0C0.

L0dx

C0dxV 𝜕v

𝜕x

𝜕x

𝜕I

V +

I I +

dx

dx

dx

Figure 8.2 Representation of element of an ideal transmission line of inductance L0 H per unit length and
capacitance C0 F per unit length. The element length � λ, the voltage and current wavelength.
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Similarly ∂/∂t of (8.1) and ∂/∂x of (8.2) gives

∂2I
∂x2

= L0C0
∂2I
∂t2

(8.4)

showing that the current waves propagate with the same velocity v2 = 1/L0C0. We must remember here,
in checking dimensions, that L0 and C0 are defined per unit length.

So far then, the oscillatory motion of the charge carriers (our particles in a medium) has led to the
propagation of voltage and current waves with a velocity governed by the product of the magnetic inertia
or inductance of the medium and its capacity to store potential energy.

8.2 Coaxial Cables

Very high frequency current and voltage waves are transmitted along coaxial cables which consist of a
conducting wire of radius r1 acting as the central axis of a hollow cylindrical conductor of radius r2 made
from plaited fine copper wire. The inductance and capacitance per unit length of this configuration are
respectively

L0 =
μ0

2π
log

r2

r1
H

and

C0 =
2πε0

log r2/r1
F

where μ0 is the magnetic permeability and ε0 is the permittivity of free space. The velocity of the waves
along this air cored coaxial cable is

c =
1

(L0C0)1/2
=

1
(μ0ε0)1/2

= 3 × 108 m · s−1

Even for larger ratios of r2/r1, loge r2/r1 remains a small factor. The frequency of the transmitted waves
must be enough to reduce the wavelength to suitable values. At a frequency of 30 MHz the wavelength is
still 10 metres. Such high frequencies require very low values of L0 and C0 which are typically ≈ μH and
pF respectively. As we shall see in the next section the ratio of the voltage to the current in the waves on the
cable is

V
I
= Z0 =

(
L0

C0

)1/2

ohms

where Z0 defines the impedance seen by the waves moving down an infinitely long cable. It is called the
Characteristic Impedance.

A continuous air-cored cable is impractical and the space between the conductors is filled with a
dielectric such as polythene with a permittivity ε = 2ε0 and a permeability μ = μ0. We write ε = εrε0
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where εr is the relative permittivity (dielectric constant) of a material and μ = μrμ0 where μr is the
relative permittivity. Hence for a polythene filled cable where μr ≈ 1

Z0 =

√
L0

C0
=

1
2π

√
μ

ε
loge

r2

r1
=

1
2π

√
1
εr

loge
r2

r1

√
μ0

ε0

where Z0 for free space =

√
μ0

ε0
= 376.6Ω

Dielectric filled cables can be made to very high degrees of precision with Z0 values of 50–100 Ω and
signal velocities = 2

3 c where c is the velocity of light. This precision allows the time for an electrical
signal to travel a given length of the cable to be accurately calculated and such a cable is used as a delay
line to separate the arrival of signals at a given point by very small intervals of time. Such a line is not
short. A pulse of λ/2 at a frequency of 30 MHz is 5 metres long and the delay line must exceed this
length. Delays are therefore measured in nanoseconds.

8.3 Characteristic Impedance of a Transmission Line

The solutions to equations (8.3) and (8.4) are,

V+ = V0+ sin
2π
λ

(vt − x)

and

I+ = I0+ sin
2π
λ

(vt − x)

where V0 and I0 are the maximum values and where the subscript + refers to a wave moving in the
positive x direction. Equation (8.1), ∂V/∂x = −L0∂I/∂t, therefore gives −V ′

+ = −vL0I′+, where the
superscript refers to differentiation with respect to the bracket (vt − x).

Integration of this equation gives

V+ = vL0I+

where the constant of integration has no significance because we are considering only oscillatory values
of voltage and current whilst the constant will change merely the d.c. level.

The ratio

V+

I+
= vL0 =

√
L0

C0
Ω

and the value of
√

L0/C0, written as Z0, is a constant for a transmission line of given properties and
is called the characteristic impedance. Note that it is a pure resistance (no dimensions of length are
involved) and it is the impedance seen by the wave system propagating along an infinitely long line, just
as an acoustic wave experiences a specific acoustic impedance ρc. The physical correspondence between
ρc and L0v=

√
L0/C0 = Z0 is immediately evident.
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The value of Z0 for the coaxial cable considered earlier can be shown to be

Z0 =
1

2π

√
μ

ε
loge

r2

r1

Electromagnetic waves in free space experience an impedance Z0 =
√
μ0/ε0 = 376.6Ω.

So far we have considered waves travelling only in the x direction. Waves which travel in the negative
x direction will be represented (from solving the wave equation) by

V− = V0− sin
2π
λ
(vt + x)

and

I− = I0− sin
2π
λ
(vt + x)

where the negative subscript denotes the negative x direction of propagation.
Equation (8.1) then yields the results that

V−
I−

= −vL0 = −Z0

so that, in common with the specific acoustic impedance, a negative sign is introduced into the ratio
when the waves are travelling in the negative x direction.

When waves are travelling in both directions along the transmission line the total voltage and current
at any point will be given by

V = V+ + V−

and

I = I+ + I−

When a transmission line has waves only in the positive direction the voltage and current waves are
always in phase, energy is propagated and power is being fed into the line by the generator at all times.
This situation is destroyed when waves travel in both directions; waves in the negative x direction are
produced by reflection at a boundary when a line is terminated or mismatched; we shall now consider
such reflections.

Worked Example

A signal of peak amplitude of 30 volts travels down a cable of Z0 = 100 Ω. What is the average power
travelling down the cable?

Solution

V2
0

2
1
Z0

=
900
200

= 4.5watts
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(V+, I+)

V+ + V– = VL

I+ + I– = IL

(V–, I–)

Z0
ZL

= = Z0

VL V+

I+ I–

–V–

Figure 8.3 Transmission line terminated by impedance ZL to produce reflected waves unless ZL = Z0, the
characteristic impedance.

8.4 Reflections from the End of a Transmission Line

Suppose that a transmission line of characteristic impedance Z0 has a finite length and that the end
opposite that of the generator is terminated by a load of impedance ZL as shown in Figure 8.3.

A wave travelling to the right (V+, I+) may be reflected to produce a wave (V−, I−).
The boundary conditions at ZL must be V+ + V− = VL, where VL is the voltage across the load and

I+ + I− = IL. In addition V+/I+ = Z0, V−/I− = −Z0 and VL/IL = ZL. These equations yield

V−
V+

=
ZL − Z0

ZL + Z0

(the voltage amplitude reflection coefficient),

I−
I+

=
Z0 − ZL

ZL + Z0

(the current amplitude reflection coefficient),

VL

V+
=

2ZL

ZL + Z0

and

IL
I+

=
2Z0

ZL + Z0

in complete correspondence with the reflection and transmission coefficients we have met so far. (See
Summary in Appendix 8.)

We see that if the line is terminated by a load ZL = Z0, its characteristic impedance, the line is
matched, all the energy propagating down the line is absorbed and there is no reflected wave. When
ZL = Z0, therefore, the wave in the positive direction continues to behave as though the transmission
line were infinitely long.

8.5 Short Circuited Transmission Line (ZL = 0)

If the ends of the transmission line are short circuited (Figure 8.4), ZL = 0, and we have

VL = V+ + V− = 0
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Voltage

Current

ZL = 0

Figure 8.4 Short circuited transmission line of length (2n + 1)λ/4 produces a standing wave with a current
maximum and zero voltage at end of line. Note that V and I amplitudes double in standing waves.

so that V+ = −V−, and there is total reflection with a phase change of π. But this is the condition, as
we saw in an earlier chapter, for the existence of standing waves; we shall see that such waves exist on
the transmission line.

At any position x on the line we may express the two voltage waves by

V+ = Z0I+ = V0+ ei(ωt−kx)

and

V− = −Z0I− = V0− ei(ωt+kx)

where, with total reflection and π phase change, V0+ = −V0−. The total voltage at x is

Vx = (V+ + V−) = V0+(e
−ikx − eikx)eiωt = (−i)2V0+ sin kx eiωt

and the total current at x is

Ix = (I+ + I−) =
V0+

Z0
(e−ikx + eikx) eiωt =

2V0+

Z0
cos kx eiωt

We see then that at any point x along the line the voltage Vx varies as sin kx and the current Ix varies as
cos kx, so that voltage and current are 90◦ out of phase in space. In addition the –i factor in the voltage
expression shows that the voltage lags the current 90◦ in time, so that if we take the voltage to vary with
cosωt from the eiωt term, then the current will vary with − sinωt. If we take the time variation of voltage
to be as sinωt the current will change with cosωt.

Voltage and current at all points are 90◦ out of phase in space and time, and the power factor
cosφ = cos 90◦ = 0, so that no power is consumed. A standing wave system exists with equal energy
propagated in each direction and the total energy propagation equal to zero. Nodes of voltage and current
are spaced along the transmission line as shown in Figure 8.4, with I always a maximum where V = 0 and
vice versa.

If the current I varies with cos ωt it will be at a maximum when V = 0; when V is a maximum the
current is zero. The energy of the system is therefore completely exchanged each quarter cycle between
the magnetic inertial energy 1

2 L0I2 and the electric potential energy 1
2 C0V2.
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Cable Resonator

Figure 1.1h showed an electrical LC circuit capable of resonating at different frequencies by varying the
value of C. A highly accurate resonator at a fixed high frequency can be made by short circuiting the
end of a transmission line to create a standing wave. Figure 8.4 shows that ZL = 0 produced a current
antinode and an open end ZL = ∞ produces a voltage antinode. The length of the cable is chosen to be
exactly λ/4 of the desired resonance which produces a first harmonic ν1 = c/4L where L is the length
of the cable. Figure 8.1 shows how the voltage antinodes are detected.

Worked Example

How long is a cable with a velocity 1/(L0C0)
1/2 = c/2 where c = 3 × 108 metres which resonates at

ν1 = 10 MHz.

Solution

Length L =
1.5 × 108

4 × 107
= 3.75metres

8.6 The Transmission Line as a Filter

The transmission line is a continuous network of impedances in series and parallel combination. The
unit section is shown in Figure 8.5(a) and the continuous network in Figure 8.5(b).

If we add an infinite series of such sections a wave travelling down the line will meet its character-
istic impedance Z0. Figure 8.6 shows that adding an extra section to the beginning of the line does not
change Z0. The impedance in Figure 8.6 is

Z = Z1 +

(
1
Z2

+
1
Z0

)−1

or

Z = Z1 +
Z2Z0

Z2 + Z0
= Z0

so the characteristic impedance is

Z0 =
Z1

2
+

√
Z2

1

4
+ Z1Z2

Note that Z1/2 is half the value of the first impedance in the line so if we measure the impedance from
a point half way along this impedance we have

Z0 =

(
Z2

1

4
+ Z1Z2

)1/2

We shall, however, use the larger value of Z0 in what follows.
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Z1

Z1 Z1 Z1

Z2

Z2 Z2 Z2

(a)

(b)

Figure 8.5 (a) The elementary unit of a transmission line. (b) A transmission line formed by a series of such units.

a

b

Z1

Z2 Z0 Z0=

Figure 8.6 A infinite series of elementary units presents a characteristic impedance Z0 to a wave travelling down
the transmission line. Adding an extra unit at the input terminal leaves Z0 unchanged.

In Figure 8.7 we now consider the currents and voltages at the far end of the transmission line. Any Vn

since it is across Z0 is given by Vn = InZ0

Moreover

Vn − Vn+1 = In Z1 = Vn
Z1

Z0

So

Vn+1

Vn
= 1 − Z1

Z0
=

Z0 − Z1

Z0

a result which is the same for all sections of the line.
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Z1

Z2 Z0Vn

In In + 1

Vn + 1

Figure 8.7 The propagation constant α = Vn+1/Vn = Z0 − 1/Z0 for all sections of the transmission line.

We define a propagation factor

α =
Vn+1

Vn
=

Z0 − Z1

Z0

which, with

Z0 =
Z1

2
+

(
Z2

1

4
+ Z1Z2

)1/2

gives

α =

(√
Z0 − Z1

2

)
(√

Z0 +
Z1
2

)

= 1 +
Z1

2Z2
−
[(

1 +
Z1

2Z2

)2

− 1

]1/2

In all practical cases Z1/Z2 is real since

1. there is either negligible resistance so that Z1 and Z2 are imaginary or
2. the impedances are purely resistive.

So, given (1) or (2) we see that if

(a)
(

1 + Z1
2Z2

)2
=

[
1 + Z1

Z2

(
1 + Z1

4Z2

)]
≥ 1 then α is real, and

(b)
(

1 + Z1
2Z2

)2
< 1 then α is complex.

For α real we have Z1/4Z2 ≥ 0 or ≤ −1.
If Z1/4Z2 ≥ 0, then 0 < α < 1, the currents in successive sections decrease progressively and since

α is real and positive there is no phase change from one section to another.
If Z1/4Z2 ≤ −1, then α ≤ 0, and there is again a progressive decrease in current amplitudes along

the network but here α is negative and there is a π phase change for each successive section.
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When α is complex we have

−1 <
Z1

4Z2
< 0

and

α = 1 +
Z1

2Z2
− i

[
1 −

(
1 +

Z1

2Z2

)2
]1/2

Note that |α| = 1 so we can write

α = cosβ − i sinβ = e−iβ

where

cosβ = 1 +
Z1

2Z2

The current amplitude remains constant along the transmission line but the phase is retarded by β with
each section. If β is constant then β = k = 2π/λ. If Z1 and Z2 are purely resistive α is fixed and the
attenuation is constant for all voltage inputs.

If Z1 is an inductance with Z2 a capacitance (or vice versa) the division between α real and α complex
occurs at certain frequencies governed by their relative magnitudes.

If Z1 = iωL and Z2 = 1/iωC for an input voltage V = V0e
iωt then |α| = 1 when 0 ≤ ω2LC ≤ 4.

So the line behaves as a low pass filter with a cut-off frequency ωc = 2/
√

LC. Above this frequency
there is a progressive decrease in amplitude with a phase change of π in each section (Figure 8.8a).

If the positions of Z1 and Z2 are now interchanged so that Z1 = 1/iωC is now a capacitance and Z2 is
now an inductance with Z2 = iωL the transmisson line becomes a high pass filter with zero attenuation
for 0 ≤ 1/ω2LC ≤ 4, that is for all frequencies above ωC = (1/2

√
LC) (Figure 8.8b).

8.7 Effect of Resistance in a Transmission Line

The discussion so far has concentrated on a transmission line having only inductance and capacitance, i.e.
wattless components which consume no power. In practice, of course, no such line exists: there is always
some resistance in the wires which will be responsible for energy losses. We shall take this resistance into
account by supposing that the transmission line has a series resistance R0Ω per unit length and a short
circuiting or shunting resistance between the wires, which we express as a shunt conductance (inverse
of resistance) written as G0, where G0 has the dimensions of siemens per metre. Our model of the short
element of length dx of the transmission line now appears in Figure 8.9, with a resistance R0 dx in series
with L0 dx and the conductance G0 dx shunting the capacitance C0 dx. Current will now leak across the
transmission line because the dielectric is not perfect. We have seen that the time-dependence of the
voltage and current variations along a transmission line may be written

V = V0 e
iωt and I = I0 e

iωt
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2

(a)

(b)

I

I

√LC

α

α

ωc =

1

√LC2
ωc =

Figure 8.8 (a) When Z1 = iωL and Z2 = (iωC)−1 the transmission line acts as a low-pass filter. (b) Reversing the
positions of Z1 and Z2 changes the transmission line into a high-pass filter.

L0dx

V V + 𝜕v

I I + 𝜕IR0dx

G0dx

dx𝜕x

𝜕x dxC0dx

Figure 8.9 Real transmission line element includes a series resistance R0 Ω per unit length and a shunt
conductance G0 S per unit length.
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so that

L0
∂I
∂t

= iωL0I and C0
∂V
∂t

= iωC0V

The voltage and current changes across the line element length dx are now given by

∂V
∂x

= −L0
∂I
∂t

− R0I = −(R0 + iωL0)I (8.1a)

∂I
∂x

= −C0
∂V
∂t

− G0V = −(G0 + iωC0)V (8.2a)

since (G0 dx)V is the current shunted across the condenser. Inserting ∂/∂x of equation (8.1a) into
equation (8.2a) gives

∂2V
∂x2

= −(R0 + iωL0)
∂I
∂x

= (R0 + iωL0)(G0 + iωC0)V = γ2V (8.3a)

where γ2 = (R0 + iωL0)(G0 + iωC0), so that γ is a complex quantity which may be written

γ = α+ ik

Inserting ∂/∂x of equation (8.2a) into equation (8.1a) gives

∂2I
∂x2

= −(G0 + iωC0)
∂V
∂x

= (R0 + iωL0)(G0 + iωC0)I = γ2I (8.4a)

an equation similar to that for V .
The equation

∂2V
∂x2

− γ2V = 0 (8.5)

has solutions for the x-dependence of V of the form

V = Ae−γx or V = Be+γx

where A and B are constants.
We know already that the time-dependence of V is of the form eiωt, so that the complete solution for V

may be written

V = (Ae−γx + Beγx)eiωt

or, since γ = α+ ik,

V = (Ae−αx e−ikx + Beαx e+ikx) eiωt

= Ae−αx ei(ωt−kx) + Beαx ei(ωt+kx)
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Reflected
wave

Incident
wave

e–αx eαx

Bei(ωt + kx)Aei(ωt – kx)

x

Figure 8.10 Voltage and current waves in both directions along a transmission line with resistance. The effect of
the dissipation term is shown by the exponentially decaying wave in each direction.

The behaviour of V is shown in Figure 8.10 – a wave travelling to the right with an amplitude decaying
exponentially with distance because of the term e−αx and a wave travelling to the left with an amplitude
decaying exponentially with distance because of the term eαx.

In the expression γ = α + ik, γ is called the propagation constant, α is called the attenuation or
absorption coefficient and k is the wave number.

The behaviour of the current wave I is exactly similar and since power is the product VI, the power
loss with distance varies as (e−αx)2; that is, as e−2αx.

We would expect this behaviour from our discussion of damped simple harmonic oscillations. When
the transmission line properties are purely inductive (inertial) and capacitative (elastic), a pure wave
equation with a sine or cosine solution will follow. The introduction of a resistive or loss element produces
an exponential decay with distance along the transmission line in exactly the same way as an oscillator
is damped with time.

From equations 8.3a and 8.4a we can calculate the values of α and k in γ = α+ ik. For light damping
we assume R0 � ωL0 and G0 � ωC0. We write

γ = [(R0 + iωL0)(G0 + iωC0)]
1/2 = iω(L0C0)

1/2

[
1 − i

(
R0

ωL0
+

G0

ωC0

)] 1
2

and expand this as a binomial expression with n = 1
2 to give

γ =
(L0C0)

1/2

2

(
R0

L0
+

G0

C0

)
+ iω(L0C0)

1/2

where the wave velocity c is given by

1
c
= (L0C0)

1/2.
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The first term in this last expression is real, equal to α and the second term is iω/c = ik. R0 and G0

should be as small as possible with G0 � R, so

α =
(L0C0)

1/2

2
R0

L0
=

1
c

R0

2L0
with

G0

C0
� 1

Recalling from section 6.6 (a few lines above the subsection Energy Loss on a Transmission Line) that
1/α is the distance over which Φm, the maximum of the wave amplitude, attenuates to Φme

−1 we have

1
α

= 2c
L0

R0

where L0
R0

is 1
time which modern manufacturers can produce to be ≈ 10−5 sec for an air-cored cable. This

gives

1/α = 6 × 108 × 10−5 = 6000 km

For a dielectric cored cable with c = 1.5 × 108 m · s−1

1/α ≈ 3 × 108 × 10−5 = 3000 km.

Note that to this approximation 1/α is independent of frequency.

8.8 Characteristic Impedance of a Transmission Line with Resistance

In a lossless line we saw that the ratio V+/I+ = Z0 =
√

L0/C0 = Z0 Ω, a purely resistive term. In what
way does the introduction of the resistance into the line affect the characteristic impedance?

The solution to the equation ∂2I/∂x2 = γ2I may be written (for the x-dependence of I) as

I = (A′ e−γx + B′ eγx) (8.6)

so that equation (8.2a)

∂I
∂x

= −(G0 + iωC0)V

gives

−γ(A′ e−γx − B′ eγx) = −(G0 + iωC0)V

or

√
(R0 + iωL0)(G0 + iωC0)

G0 + iωC0
(A′ e−γx − B′ eγx) = V = V+ + V−
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But, except for the eiωt term,

A′ e−γx = I+

the current wave in the positive x direction, so that

√
R0 + iωL0

G0 + iωC0
I+ = V+

or

V+

I+
=

√
R0 + iωL0

G0 + iωC0
= Z′

0 (8.6a)

for a transmission line with resistance. Similarly B′ eγx = I− and

V−
I−

= −
√

R0 + iωL0

G0 + iωC0
= −Z′

0 (8.6b)

The presence of the resistance term in the complex characteristic impedance means that power will be
lost through joule dissipation and that energy will be absorbed from the wave system.

Expanding the expression Z′
0 = [(R + iω/L0)/(G0 + iωC0)]

1/2 as a binomial expression with n = 1
2

with G0 � R0 and G0 � ωC0 we have

Z′
0 =

(
R + iωL0

iωC0

) 1
2

=

√
L0

C0

(
1 − iR0

ωL0

) 1
2

=
√

Z0

(
1 − iR0

2ωL0

)
≈

√
Z0

a pure resistance. Thus the characteristic impedance of the cable is approximately a pure resistance
independent of the line resistance which affects only the small reactive part of the impedance. The
attenuation

α =
R0

2

√
C0

L0
=

R0

2Z0
i.e. ∝ R0 and ∝ 1/Z0.

This holds at frequencies where R0 is not a function of ω but this is lost in small cables where L0 is
not 	R0.

At high frequencies the ‘skin effect’ (Chapter 9) becomes important. A very high conductivity has a
large damping effect which restricts the current to the outer surface of the conductor.

Worked Example

Show that the impedance of a real transmission line with resistance seen from a position x in the line is
given by

Zx = Z′
0 ·

Ae−γx − Be+γx

Ae−γx + Be+γx
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Solution

Equation 8.6 gives the x dependence of I = (Ae−γx + Be+γx) where A is the value of I+ at x = 0 for
the right-going wave and B is the value of I− at x = 0 for the left-going wave. Equation 8.6a gives
V+ = Z′

0I+ and equation 8.6b gives V− = −Z′
0I−. Hence, V+ + V− = Z′

0(I+ − I−) so

Zx = Z′
0

(
V+ + V−
I+ + I−

)
= Z′

0

(
Ae−γx − Be+γx

Ae−γx + Be+γx

)

8.9 Matching Impedances

Proof that two cables with impedances Z0 and ZL are matched by the insertion between them of a cable
with impedance Zm where Z2

m = Z0ZL. The length of Zm is λ/4 measured in Zm. This result is true for
the impedances of all media capable of propagating waves. Note Zm is loss free.

The boundary condition at Z0Zm junction gives:

V0+ + V0− = Vm0+ + Vm0−

I0+ + I0− = Im0+ + Im0−

where V0+, V0− are the voltages of forward and backward waves on Z0 side of Z0Zm junction; I0+, I0−
are the currents of forward and backward waves on Z0 side of Z0Zm junction; Vm0+, Vm0− are the voltages
of forward and backward waves on Zm side of Z0Zm junction; Im0+, Im0− are the currents of forward and
backward waves on Zm side of Z0Zm junction.

The boundary condition at ZmZL junction gives:

VmL+ + VmL− = VL and ImL+ + ImL− = IL

where VmL+, VmL− are the voltages of forward and backward waves on Zm side of ZmZL junction; ImL+,
ImL− are the currents of forward and backward waves on Zm side of ZmZL junction; VL, IL are the voltage
and current across the load.

If the length of the matching line is l, we have:

Vm0+ = VmL+e
ikl and Im0+ = ImL+e

ikl

Vm0− = VmL−e
−ikl and Im0− = ImL−e

−ikl

In addition, we have the relations:

VL

IL
= ZL and

V0

I0
= Z0

Vm0+

Im0+
= −Vm0−

Im0−
=

VmL+

ImL+
= −VmL−

ImL−
= Zm
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The above conditions yield:

VmL+ = Vm0+e
−ikl and ImL+ = Im0+e

−ikl

VmL− =
ZL − Zm

ZL + Zm
VmL+

VmL− =
Zm − ZL

Zm + ZL
ImL+

Vm0− = VmL−e
−ikl =

ZL − Zm

ZL + Zm
VmL+e

−ikl = Vm0+
ZL − Zm

ZL + Zm
e−i2kl

Im0− = ImL−e
−ikl =

Zm − ZL

ZL + Zm
ImL+e

−ikl = Im0+
Zm − ZL

ZL + Zm
e−i2kl

Impedance matching requires V0− = 0 and I0− = 0, i.e.

V0+ = Vm0+ + Vm0− and I0+ = Im0+ + Im0−

i.e.

V0+ = Vm0+

(
1 +

ZL − Zm

ZL + Zm
e−i2kl

)

I0+ = Im0+

(
1 +

Zm − ZL

ZL + Zm
e−i2kl

)

By dividing the above equations we have:

Z0 = Zm
(ZL + Zm)e

ikl + (ZL − Zm)e
−ikl

(ZL + Zm)eikl + (Zm − ZL)e−ikl
= Zm

ZL cos kl + iZm sin kl
Zm cos kl + iZL sin kl

which for kl = π/2, or l = λ/4 yields:

Z2
m = Z0ZL

Problem 8.1. In a short-circuited lossless transmission line integrate the magnetic (inductive) energy
1
2 L0I2 and the electric (potential) energy 1

2 C0V2 over the last quarter wavelength (0 to − λ/4) to show
that they are equal.

Problem 8.2. Show, in Problem 8.1, that the sum of the instantaneous values of the two energies over
the last quarter wavelength is equal to the maximum value of either.
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Problem 8.3. The impedance of a real transmission line seen from a position x on the line is given by

Zx = Z0
Ae−γx − Be+γx

Ae−γx + Be+γx

where γ is the propagation constant and A and B are the current amplitudes at x = 0 of the waves
travelling in the positive and negative x directions respectively. If the line has a length l and is terminated
by a load ZL, show that

ZL = Z0
Ae−γl − Beγl

Ae−γl + Beγl

Problem 8.4. Show that the input impedance of the line of Problem 8.3; that is, the impedance of the
line at x = 0, is given by

Zi = Z0

(
Z0 sinh γl + ZL cosh γl
Z0 cosh γl + ZL sinh γl

)

(Note : 2 cosh γl = eγl + e−γl

2 sinh γl = eγl − e−γl)

Problem 8.5. If the transmission line of Problem 8.4 is short-circuited, show that its input impedance is
given by

Zsc = Z0 tanh γl

and when it is open-circuited the input impedance is

Z0c = Z0 coth γl

By taking the product of these quantities, suggest a method for measuring the characteristic impedance
of the line.

Problem 8.6. Show that the input impedance of a short-circuited loss-free line of length l is given by

Zi = i

√
L0

C0
tan

2πl
λ

and by sketching the variation of the ratio Zi/
√

L0/C0 with l, show that for l just greater than
(2n+ 1)λ/4, Zi is capacitative, and for l just greater than nλ/2 it is inductive. (This provides a positive
or negative reactance to match another line.)

Problem 8.7. Show that a short-circuited quarter wavelength loss-free line has an infinite impedance
and that if it is bridged across another transmission line it will not affect the fundamental wavelength but
will short-circuit any undesirable second harmonic.
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Problem 8.8. Show that a loss-free line of characteristic impedance Z0 and length nλ/2 may be used to
couple two high frequency circuits without affecting other impedances.

Problem 8.9. A transmission line has Z1 = iωL and Z2 = (iωC)−1. If, for a range of frequencies ω, the
phase shift per section β is very small show that β = k the wave number and that the phase velocity is
independent of the frequency.

Problem 8.10. In a transmission line with losses where R0/ωL0 and G0/ωC0 are both small quantities
the expression for the propagation constant is

γ = [(R0 + iωL0)(G0 + iωC0)]
1/2.

If γ = α+ ik where the attenuation constant

α =
R0

2

√
C0

L0
+

G0

2

√
L0

C0

and the wave number

k = ω
√

L0C0 =
ω

v

Show that for G0 = 0 the Q value of such a line is given by k/2α.

Problem 8.11. Expand the expression for the characteristic impedance of the transmission line of
Problem 8.10 in terms of the characteristic impedance of a lossless line to show that if

R0

L0
=

G0

C0

the impedance remains real because the phase effects introduced by the series and shunt losses are equal
but opposite.

Problem 8.12. The wave description of an electron of total energy E in a potential well of depth V over
the region 0 < x < l is given by Schrödinger’s time-independent wave equation

∂2ψ

∂x2
+

8π2m
h2

(E − V)ψ = 0

where m is the electron mass and h is Planck’s constant. (Note that V = 0 within the well.)
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E

I

V

eγx e–γx

Show that for E > V (inside the potential well) the solution for ψ is a standing wave solution but for
E < V (outside the region 0 < x < l) the x dependence of ψ is e±γx, where

γ =
2π
h

√
2m(V − E)
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Electromagnetic Waves

Introduction

Earlier chapters have shown that the velocity of waves through a medium is determined by the inertia
and the elasticity of the medium. These two properties are capable of storing wave energy in the medium,
and in the absence of energy dissipation they also determine the impedance presented by the medium
to the waves. In addition, when there is no loss mechanism a pure wave equation with a sine or cosine
solution will always be obtained, but this equation will be modified by any resistive or loss term to give
an oscillatory solution which decays with time or distance.

These physical processes describe exactly the propagation of electromagnetic waves through a
medium. The magnetic inertia of the medium, as in the case of the transmission line, is provided by
the inductive property of the medium, i.e. the permeability μ, which has the units of henries per metre.
The elasticity or capacitive property of the medium is provided by the permittivity ε, with units of farads
per metre. The storage of magnetic energy arises through the permeability μ; the potential or electric
field energy is stored through the permittivity ε.

If the material is defined as a dielectric, only μ and ε are effective and a pure wave equation for both
the magnetic field vector H and the electric field vector E will result. If the medium is a conductor,
having conductivity σ (the inverse of resistivity) with dimensions of siemens per metre or (ohm m)−1,
in addition to μ and ε, then some of the wave energy will be dissipated and absorption will take place.

In this chapter we will consider first the propagation of electromagnetic waves in a medium
characterized by μ and ε only, and then treat the general case of a medium having μ, ε and σ properties.

9.1 Maxwell’s Equations

Electromagnetic waves arise whenever an electric charge changes its velocity. Electrons moving from a
higher to a lower energy level in an atom will radiate a wave of a particular frequency and wavelength.
A very hot ionized gas consisting of charged particles will radiate waves over a continuous spectrum as
the paths of individual particles are curved in mutual collisions. This radiation is called ‘Bremsstrahlung’.

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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Frequency
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Figure 9.1 Wavelengths and frequencies in the electromagnetic spectrum.

The radiation of electromagnetic waves from an aerial is due to the oscillatory motion of charges in an
alternating current flowing in the aerial.

Figure 9.1 shows the frequency spectrum of electromagnetic waves. All of these waves exhibit the
same physical characteristics.

It is quite remarkable that the whole of electromagnetic theory can be described by the four vector
relations in Maxwell’s equations. In examining these relations in detail we shall see that two are steady
state; that is, independent of time, and that two are time-varying.

The two time-varying equations are mathematically sufficient to produce separate wave equations for
the electric and magnetic field vectors, E and H, but the steady state equations help to identify the wave
nature as transverse.

The first time-varying equation relates the time variation of the magnetic induction, μH = B, with the
space variation of E; that is

∂

∂t
(μH) is connectedwith

∂E
∂z

(say)

This is nothing but a form of Lenz’s or Faraday’s Law, as we shall see.
The second time-varying equation states that the time variation of εE defines the space variation of H,

that is

∂

∂t
(εE) is connectedwith

∂H
∂z

(say)

Again we shall see that this is really a statement of Ampere’s Law.
These equations show that the variations of E in time and space affect those of H and vice versa. E

and H cannot be considered as isolated quantities but are interdependent.
The product εE has dimensions

farads

metre
× volts

metre
=

charge

area

This charge per unit area is called the displacement charge D = εE.
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Physically it appears in a dielectric when an applied electric field polarizes the constituent atoms
or molecules and charge moves across any plane in the dielectric which is normal to the applied field
direction. If the applied field is varying or alternating with time we see that the dimensions of

∂D
∂t

=
∂

∂t
(εE) =

charge

time× area

current per unit area. This current is called the displacement current. It is comparatively simple to visual-
ize this current in a dielectric where physical charges may move – it is not easy to associate a displacement
current with free space in the absence of a material but it may always be expressed as Id = ε(∂φE/∂t),
where φE is the electric field flux through a surface.

Consider what happens in the electric circuit of Figure 9.2 when the switch is closed and the battery
begins to charge the capacitor C to a potential V . A current I obeying Ohm’s Law (V = IR) will flow
through the connecting leads as long as the condenser is charging and a compass needle or other mag-
netic field detector placed near the leads will show the presence of the magnetic field associated with
that current. But suppose a magnetic field detector (shielded from all outside effects) is placed in the
region between the condenser plates where no ohmic or conduction current is flowing. Would it detect a
magnetic field? The answer is yes; all the magnetic field effects from a current exist in this region as long
as the condenser is charging, that is, as long as the potential difference and the electric field between the
capacitor plates are changing.

It was Maxwell’s major contribution to electromagnetic theory to assert that the existence of a time-
changing electric field in free space gave rise to a displacement current. The same result follows from
considering the conservation of charge. The flow of charge into any small volume in space must equal
that flowing out. If the volume includes the top plate of the capacitor the ohmic current through the leads
produces the flow into the volume, while the displacement current represents the flow out.

In future, therefore, two different kinds of current will have to be considered:

1. The familar conduction current obeying Ohm’s Law (V = IR) and
2. The displacement current of density ∂D/∂t.

In a medium of permeability μ and permittivity ε, but where the conductivity σ = 0, the displacement
current will be the only current flowing. In this case a pure wave equation for E and H will follow and
there will be no energy loss or attenuation.

Switch
closed

Battery

Magnetic
field?

R

C

l

Figure 9.2 In this circuit, when the switch is closed the conduction current charges the capacitor. Throughout
charging the quantity εE in the volume of the condenser is changing and the displacement current per unit area
∂/∂t(εE) is associated with the magnetic field present between the capacitor plates.
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When σ �= 0 a resistive element allows the conduction current to flow, energy loss will follow, a
diffusion term is added to the wave equation and the wave amplitude will attenuate exponentially with
distance. We shall see that the relative magnitude of these two currents is frequency-dependent and that
their ratio governs whether the medium behaves as a conductor or as a dielectric.

9.2 Electromagnetic Waves in a Medium having Finite Permeability μ and Permittivity ε
but with Conductivity σ= 0

We shall consider a system of plane waves and choose the plane xy as that region over which the wave
properties are constant. These properties will not vary with respect to x and y and all derivatives ∂/∂x
and ∂/∂y will be zero.

The first time-varying equation of Maxwell is written in vector notation as

curl E = ∇× E = − ∂

∂t
B = −μ

∂

∂t
H ∗

This represents three component equations:

−μ ∂
∂t Hx = ∂

∂y Ez − ∂
∂z Ey

−μ ∂
∂t Hy = ∂

∂z Ex − ∂
∂x Ez

−μ ∂
∂t Hz = ∂

∂x Ey − ∂
∂y Ex

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.1)

where the subscripts represent the component directions. Ex, Ey and Ez are, respectively, the magnitudes
of vectors Ex, Ey and Ez. Similarly, Hx, Hy and Hz are the magnitudes of vectors Hx, Hy and Hz. The
dimensions of these equations may be written

− μH
time

=
E

length

and multiplying each side by (length)2 gives

− μH
time

× area = E × length

i.e.

totalmagnetic flux

time
= volts

This is dimensionally of the form of Lenz’s or Faraday’s Law.
The second time-varying equation of Maxwell is written in vector notation as

curlH = ∇× H =
∂D
∂t

= ε
∂E
∂t

∗The electromagnetic wave equations are derived using vector methods in Appendix 5.



�

�

“Pain-Driver” — 2014/12/30 — 11:45 — page 187 — #5
�

�

�

�

�

�

Electromagnetic Waves 187

This represents three component equations:

ε ∂
∂t Ex = ∂

∂y Hz − ∂
∂z Hy

ε ∂
∂t Ey = ∂

∂z Hx − ∂
∂x Hz

ε ∂
∂t Ez = ∂

∂x Hy − ∂
∂y Hx

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.2)

The dimensions of these equations may be written

current I
area

=
H

length

and multiplying both sides by length gives

current

length
=

I
length

= H

which is dimensionally of the form of Ampere’s Law (i.e. the circular magnetic field at radius r due to
the current I flowing in a straight wire is given by H = I/2πr). Maxwell’s first steady state equation
may be written

divD = ∇ · D = ε

(
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

)
= ρ (9.3)

where ε is constant and ρ is the charge density. This states that over a small volume element dx dy dz of
charge density ρ the change of displacement depends upon the value of ρ.

When ρ = 0 the equation becomes

ε

(
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

)
= 0 (9.3a)

so that if the displacement D = εE is graphically represented by flux lines which must begin and end on
electric charges, the number of flux lines entering the volume element dx dy dz must equal the number
leaving it.

The second steady state equation is written

divB = ∇ · B = μ

(
∂Hx

∂x
+

∂Hy

∂y
+

∂Hz

∂z

)
= 0 (9.4)

Again this states that an equal number of magnetic induction lines enter and leave the volume dx dy dz.
This is a physical consequence of the non-existence of isolated magnetic poles, i.e. a single north pole
or south pole.

Whereas the charge density ρ in equation (9.3) can be positive, i.e. a source of flux lines (or displace-
ment), or negative, i.e. a sink of flux lines (or displacement), no separate source or sink of magnetic
induction can exist in isolation, every source being matched by a sink of equal strength.
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9.3 The Wave Equation for Electromagnetic Waves

Since, with these plane waves, all derivatives with respect to x and y are zero, equations (9.1) and (9.4)
give

μ
∂Hz

∂t
= 0 and

∂Hz

∂z
= 0

therefore, Hz is constant in space and time and because we are considering only the oscillatory nature
of H a constant Hz can have no effect on the wave motion. We can therefore put Hz = 0. A similar
consideration of equations (9.2) and (9.3a) leads to the result that Ez = 0.

The absence of variation in Hz and Ez means that the oscillations or variations in H and E occur in direc-
tions perpendicular to the z direction. We shall see that this leads to the conclusion that electromagnetic
waves are transverse waves.

In addition to having plane waves we shall simplify our picture by considering only plane-polarized
waves (see Figure 9.3).

We can choose the electric field vibration to be in either the x or y direction. Let us consider Ex only,
with Ey = 0. In this case equations (9.1) give

−μ
∂Hy

∂t
=

∂Ex

∂z
(9.1a)

and equations (9.2) give

ε
∂Ex

∂t
= −∂Hy

∂z
(9.2a)

Using the fact that

∂2

∂z∂t
=

∂2

∂t∂z

E0

H0

EX

λ (Vt – Z)E
X 
= E0 

Sin

H0Hy

(E × H)
Z

2π

λ (Vt – Z)H
X 

= H0 
Sin

2π

E0

Figure 9.3 In a plane-polarized electromagnetic wave the electric field vector Ex and magnetic field vector Hy

are perpendicular to each other and vary sinusoidally. In a non-conducting medium they are in phase. The vector
product, E × H, gives the direction of energy flow and the instantaneous value of energy flow. It is called the
Poynting vector.
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it follows by taking ∂/∂t of equation (9.1a) and ∂/∂z of equation (9.2a) that

∂2

∂z2
Hy = με

∂2

∂t2
Hy (the wave equation for Hy)

Similarly, by taking ∂/∂t of (9.2a) and ∂/∂z of (9.1a), we obtain

∂2

∂z2
Ex = με

∂2

∂t2
Ex (the wave equation for Ex)

Thus, the vectors Ex and Hy both obey the same wave equation, propagating in the z direction with the
same velocity v2 = 1/με. In free space the velocity is that of light, that is, c2 = 1/μ0ε0, where μ0 is the
permeability of free space and ε0 is the permittivity of free space.

The solutions to these wave equations may be written, for plane waves, as

Ex = E0 sin
2π
λ

(vt − z)

Hy = H0 sin
2π
λ

(vt − z)

where E0 and H0 are the maximum amplitude values of E and H. Note that the sine (or cosine) solutions
means that no attenuation occurs: only displacement currents are involved and there are no conductive
or ohmic currents.

We can represent the electromagnetic wave (Ex, Hy) travelling in the z direction in Figure 9.3, and
recall that because Ez and Hz are constant (or zero) the electromagnetic wave is a transverse wave.

The direction of propagation of the waves will always be in the E × H direction; in this case, E × H
has magnitude, ExHy and is in the z direction. Ex and Hy are plane polarized.

This product has the dimensions

voltage× current

length× length
=

electrical power

area

measured in units of watts per square metre. E × H is called the Poynting vector. It gives the direction
and instantaneous value of energy flow.

The time averaged energy flow per second across unit area is given:

Sav =
1
2

E × H∗

where H∗ is the complex conjugate of H.

9.4 Illustration of Poynting Vector

We can illustrate the flow of electromagnetic energy in terms of the Poynting vector by considering the
simple circuit of Figure 9.4, where the parallel plate capacitor of area A and separation d, containing a
dielectric of permittivity ε, is being charged to a voltage V .

Throughout the charging process current flows, and the electric and magnetic field vectors show that
the Poynting vector is always directed into the volume Ad occupied by the dielectric.
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E × H

E × H directed to 
condenser axis

Dielectric
permittivity ε

Plate
separation d

Area A

l

H E

Figure 9.4 During charging the vector E × H is directed into the capacitor volume. At the end of the charging
the energy is totally electrostatic and equals the product of the capacitor volume, Ad, and the electrostatic energy
per unit volume, 1

2εE2.

The capacitance C of the capacitor is εA/d and the total energy of the capacitor at potential V is 1
2 CV2

joules, which is stored as electrostatic energy. But V = Ed, where E is the final value of the electric
field, so that the total energy

1
2

CV2 =
1
2

(
εA
d

)
E2d2 =

1
2
(εE2)Ad

where Ad is the volume of the capacitor.
The electrostatic energy per unit volume stored in the capacitor is therefore 1

2εE2 and results from the
flow of electromagnetic energy during charging.

Worked Example

Show that when a current is increasing in a long uniformly wound solenoid of radius r the total energy
flow rate over a length l (the Poynting vector times the surface area 2πrl) gives the time rate of change
of the magnetic energy stored in that length of the solenoid.

Solution

The electric field driving the current around the solenoid wire is azimuthal, that is Eθ. The solenoid
consists of many turns and when the current is increasing the e.m.f. around a single turn is

E02πr = −μ
∂Hz

∂t
πr2

where πr2 is the cross-sectional area of the solenoid. The value of

E0 = −μr
2
∂Hz

∂t
.
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The Poynting vector S = E × H = −(E0Hz)r in the -ve radial direction from the solenoid surface to its
central axis. So

S =
μr
2

Hz
∂Hz

∂t
.

Over the length of the solenoid the Poynting vector is

S × 2πrl = μπr2lHz
∂Hz

∂t

where the change in the magnetic energy from the current increase is

∂

∂t

(
1
2
μH2 × πr2l

)
= μπr2lHz

∂Hz

∂t

9.5 Impedance of a Dielectric to Electromagnetic Waves

If we put the solutions

Ex = E0 sin
2π
λ

(vt − z)

and

Hy = H0 sin
2π
λ

(vt − z)

in equation (9.1a) where

−μ
∂Hy

∂t
=

∂Ex

∂z

then

−μvHy = −Ex, and since v2 =
1
με√

μHy =
√
εEx

that is

Ex

Hy
=

√
μ

ε
=

E0

H0

which has the dimensions of ohms.
The value

√
μ/ε therefore represents the characteristic impedance of the medium to electromagnetic

waves (compare this with the equivalent result V/I =
√

L0/C0 = Z0 for the transmission line of the
previous chapter).
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Worked Example

A plane-polarized electromagnetic wave propagates along a transmission line consisting of two 1 metre
wide parallel strips of a perfect conductor containing a medium of permeability μ and permittivity ε. The
planes are separated by 1 metre. The wave propagation is in the z direction, the magnetic field Hy lies
in the plane of the transmission line and the electric vector Ex is normal to (and joins) the planes of the
conductors. The electric field Ex generates equal but opposite surface charges on the conductors of mag-
nitude εExC m−2, the motion of which in the direction of wave propagation gives rise to a surface current.
Show that the magnitude of this current is Hy and the characteristic impedance of the transmission line
is

Ex

Hy
=

√
μ

ε

Solution

The induced displaced charge

q = εExC m2

so the current

I = qv =
q

(με)1/2
=

εEx

(με)1/2

Since

√
μHy =

√
εEx

then

I =
√

ε

μ
Ex =

√
ε

μ

√
μ

ε
Hy = Hy.

V = Ex(plane separation) = Ex

∴ Z =
V
I
=

Ex

Hy
=

√
μ

ε
.

In free space

Ex

Hy
=

√
μ0

ε0
= 376.7Ω

so that free space presents an impedance of 376.7Ω to electromagnetic waves travelling through it.
It follows from

Ex

Hy
=

√
μ

ε
that

E2
x

H2
y
=

μ

ε
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and therefore

εE2
x = μH2

y

Both of these quantities have the dimensions of energy per unit volume, for instance εE2
x has dimensions

farads

metre
× volts2

metres2 =
joules

metres3

as we saw in the illustration of the Poynting vector. Thus, for a dielectric the electrostatic energy 1
2εE2

x
per unit volume in an electromagnetic wave equals the magnetic energy per unit volume 1

2μH2
y and the

total energy is the sum 1
2εE2

x +
1
2μH2

y .

This gives the instantaneous value of the energy per unit volume and we know that, in the wave,

Ex = E0 sin(2π/λ) (vt − z)

and

Hy = H0 sin(2π/λ) (vt − z)

so that the time average value of the energy per unit volume is

1
2
εĒ2

x +
1
2
μH̄2

y =
1
4
εE2

0 +
1
4
μH2

0

=
1
2
εE2

0 Jm
−3

Now the amount of energy in an electromagnetic wave which crosses unit area in unit time is called
the intensity, I, of the wave and is evidently

(
1
2εE2

0

)
v where v is the velocity of the wave.

This gives the time averaged value of the Poynting vector and, for an electromagnetic wave in free
space we have

I =
1
2

cε0E2
0 =

1
2

cμ0H2
0 Wm−2

9.6 Electromagnetic Waves in a Medium of Properties μ, ε and σ (where σ �= 0)

From a physical point of view the electric vector in electromagnetic waves plays a much more significant
role than the magnetic vector, e.g. most optical effects are associated with the electric vector. We shall
therefore concentrate our discussion on the electric field behaviour.

In a medium of conductivity σ = 0 we have obtained the wave equation

∂2Ex

∂z2
= με

∂2Ex

∂t2
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where the right-hand term, rewritten

μ
∂

∂t

[
∂

∂t
(εEx)

]

shows that we are considering a term

μ
∂

∂t

[
displacement current

area

]

When σ �= 0 we must also consider the conduction currents which flow. These currents are given by
Ohm’s Law as I = V/R, and we define the current density; that is, the current per unit area, as

J =
I

Area
=

1
R × Length

× V
Length

= σE

where σ is the conductivity 1/( R× Length) and E is the electric field. J = σE is another form of Ohm’s
Law.

With both displacement and conduction currents flowing, Maxwell’s second time-varying equation
reads, in vector form,

∇× H =
∂

∂t
D + J (9.5)

each term on the right-hand side having dimensions of current per unit area. The presence of the con-
duction current modifies the wave equation by adding a second term of the same form to its right-hand
side, namely

μ
∂

∂t

(
current

area

)
which isμ

∂

∂t
(J) = μ

∂

∂t
(σE)

The final equation is therefore given by

∂2

∂z2
Ex = με

∂2

∂t2
Ex + μσ

∂

∂t
Ex (9.6)

and this equation may be derived formally by writing the component equation of (9.5) as

ε
∂Ex

∂t
+ σEx = −∂Hy

∂z
(9.5a)

together with

−μ
∂Hy

∂t
=

∂Ex

∂z
(9.1a)

and taking ∂/∂t of (9.5a) and ∂/∂z of (9.1a). We see immediately that the presence of the resistive
or dissipation term, which allows conduction currents to flow, will add a diffusion term of the
type discussed in Chapter 6 to the pure wave equation. The product (μσ)−1 is called the magnetic
diffusivity, and has the dimensions L2T−1, as we expect of all diffusion coefficients (see section 6.6).
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Worked Example

Show that equation 9.6 has dimensions of

V = L
∂I1

∂t
+ L

∂I2

∂t

where I1 is the displacement current and I2 is the ohmic current.

Solution

∂2Ex

∂z2
= με

∂2Ex

∂t2
+ μσ

∂Ex

∂t

has dimensions

V/l
l2

=
inductance

l
displacement current

t × l2
+

inductance

l
ohmic current

t × l2

giving

V = L
∂I1

∂t
+ L

∂I2

∂t

We are now going to look for the behaviour of Ex in this new equation (9.6), with the assumption that its
time variation is simple harmonic, so that Ex = E0e

iωt. Using this value in equation (9.6) gives

∂2Ex

∂z2
− (iωμσ − ω2με)Ex = 0

which is in the form of equation (8.5), written

∂2Ex

∂z2
− γ2Ex = 0

where γ2 = iωμσ − ω2με.
We saw in Chapter 8 that this produced a solution with the term e−γz or e+γz, but we concentrate on

the Ex oscillation in the positive z direction by writing

Ex = E0e
iωte−γz

In order to assign a suitable value to γ we must go back to equation (9.6) and consider the relative
magnitudes of the two right-hand side terms. If the medium is a dielectric, only displacement currents
will flow. When the medium is a conductor, the ohmic currents of the second term on the right-hand
side will be dominant. The ratio of the magnitudes of the conduction current density to the displacement
current density is the ratio of the two right-hand side terms. This ratio is

J
∂D/∂t

=
σEx

∂/∂t(εEx)
=

σEx

∂/∂t(εE0 eiωt)
=

σEx

iωεEx
=

σ

iωε
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We see immediately from the presence of i that the phase of the displacement current is 90◦ ahead of
that of the ohmic or conduction current. It is also 90◦ ahead of the electric field Ex so the displacement
current dissipates no power.

For a conductor, where J � ∂D/∂t, we have σ � ωε, and γ2 = iσ(ωμ)− ωε(ωμ) becomes

γ2 ≈ iσωμ

to a high order of accuracy.
Now

√
i =

1 + i√
2

so that

γ = (1 + i)
(ωμσ

2

)1/2

and

Ex = E0 e
iωt e−γz

= E0 e
−(ωμσ/2)1/2z ei[ωt−(ωμσ/2)1/2z]

a progressive wave in the positive z direction with an amplitude decaying with the factor e−(ωμσ/2)1/2z.
Note that the product ωμσ has dimensions L−2, where L is the short distance associated with very

strong damping by magnetic diffusivity. The electric field is effectively short circuited.

9.7 Skin Depth

After travelling a distance

δ =

(
2

ωμσ

)1/2

in the conductor the electric field vector has decayed to a value Ex = E0 e
−1; this distance is called the

skin depth (Figure 9.5).
For copper, with μ ≈ μ0 and σ = 5.8 × 107 S m−1 at a frequency of 60 Hz, δ ≈ 9 mm; at 1 MHz,

δ ≈ 6.6 × 10−5m and at 30 000 MHz (radar wavelength of 1 cm), δ ≈ 3.8 × 10−7m.
Thus, high frequency electromagnetic waves propagate only a very small distance in a conductor.

The electric field is confined to a very small region at the surface; significant currents will flow only at
the surface and the resistance of the conductor therefore increases with frequency. We see also why a
conductor can act to ‘shield’ a region from electromagnetic waves.
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Free space Conductor

ωμσ

λc = 2πδ

Ex

Z

λc

δ = (         )2 2
1

Figure 9.5 Electromagnetic waves in a dielectric strike the plane surface of a conductor, and the electric field
vector E0 is damped to a value E0e−1 in a distance of (2/ωμσ)1/2, the ‘skin depth’. This explains the electrical
shielding properties of a conductor. λc is the wavelength in the conductor.

9.8 Electromagnetic Wave Velocity in a Conductor and Anomalous Dispersion

The phase velocity of the wave v is given by

v =
ω

k
=

ω

(ωμσ/2)1/2
= ωδ =

(
2ω
μσ

)1/2

= νλc

When δ is small, v is small, and the refractive index c/v of a conductor can be very large. We shall see later
that this can explain the high optical reflectivities of good conductors. The velocity v = ωδ = 2πνδ, so
that λc in the conductor is 2πδ and can be very small. Since v is a function of the frequency an electrical
conductor is a dispersive medium to electromagnetic waves. Moreover, as the table below shows us,
∂v/∂λ is negative, so that the conductor is anomalously dispersive and the group velocity is greater
than the wave velocity. Since c2/v2 = με/μ0ε0 = μrεr, where the subscript r defines non-dimensional
relative values; that is, μ/μ0 = μr, ε/ε0 = εr, then for μr ≈ 1

εrv
2 = c2

and

∂

∂λ
εr = −2

v
εr
∂v
∂λ

which confirms our statement in the chapter on group velocity that for ∂εr/∂λ positive a medium is
anomalously dispersive. We see too that c2/v2 = εr = n2, where n is the refractive index, so that
the curve in Figure 3.11 showing the reactive behaviour of the oscillator impedance at displacement
resonance is also showing the behaviour of n. This relative value of the permittivity is familiarly known
as the dielectric constant when the frequency is low. This identity is lost at higher frequencies because
the permittivity is frequency-dependent.

Note that λc = 2πδ is very small, and that when an electromagnetic wave strikes a conducting surface
the electric field vector will drop to about 1% of its surface value in a distance equal to 3

4λc = 4.6δ.
Effectively, therefore, the electromagnetic wave travels less than one wavelength into the conductor.
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Frequency λfree space
δ

(m)
vconductor = ωδ

(m/s)

Refractive
index

(c/vconductor)

60 5000 km 9 × 10−3 3.2 9.5 × 107

106 300 km 6.6 × 10−5 4.1 × 102 7.3 × 105

3 × 1010 10−2 m 3.9 × 10−7 7.1 × 104 4.2 × 103

9.9 When is a Medium a Conductor or a Dielectric?

We have already seen that in any medium having με and σ properties the magnitude of the ratio of the
conduction current density to the displacement current density

J
∂D/∂t

=
σ

ωε

a non-dimensional quantity.
We may therefore represent the medium by the simple circuit in Figure 9.6 where the total current is

divided between the two branches, a capacitative branch of reactance 1/ωε (ohm-metres) and a resistive
branch of conductance σ (siemens/metre). If σ is large the resistivity is small, and most of the current
flows through the σ branch and is conductive. If the capacitative reactance 1/ωε is so small that it takes
most of the current, this current is the displacement current and the medium behaves as a dielectric.

1
R

J
total

1
ConductivityReactance

conduction
current σ E 

displacement
current ω ε E

ω ε σ ∝

Figure 9.6 A simple circuit showing the response of a conducting medium to an electromagnetic wave. The total
current density J is divided by the parallel circuit in the ratio σ/ωε(the ratio of the conduction current density to
the displacement current density). A large conductance σ (small resistance) gives a large conduction current while
a small capacitative reactance 1/ωε allows a large displacement current to flow. For a conductor σ/ωε ≥ 100;
for a dielectric ωε/σ ≥ 100. Note the frequency dependence of this ratio. At ω ≈ 1020rad/s copper is a dielectric
to X-rays.
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Quite arbitrarily we say that if

J
∂D/∂t

=
σ

ωε
> 100

then conduction currents dominate and the medium is a conductor. If

∂D/∂t
J

=
ωε

σ
> 100

then displacement currents dominate and the material behaves as a dielectric. Between these values exist
a range of quasi-conductors; some of the semi-conductors fall into this category.

The ratio σ/ωε is, however, frequency dependent, and a conductor at one frequency may be a dielectric
at another.

For copper, which has σ = 5.8 × 107 S m−1 and ε ≈ ε0 = 9 × 10−12 F m−1,

σ

ωε
≈ 10l8

frequency

so up to a frequency of 1016 Hz (the frequency of ultraviolet light) σ/ωε > 100, and copper is a conduc-
tor. At a frequency of 1020 Hz, however (the frequency of X-rays), ωε/σ > 100, and copper behaves as
a dielectric. This explains why X-rays travel distances equivalent to many wavelengths in copper.

Typically, an insulator has σ ≈ 10−15 S m −1 and ε ≈ 10−11 F m −1, which gives

ωε

σ
≈ 104ω

so the conduction current is negligible at all frequencies.

9.10 Why will an Electromagnetic Wave not Propagate into a Conductor?

To answer this question we need only consider the simple circuit where a capacitor C discharges through
a resistance R. The voltage equation gives

q
C

+ IR = 0

and since I = dq/dt, we have

dq
dt

= − q
RC

or q = q0e
−t/RC

where q0 is the initial charge.
We see that an electric field will exist between the plates of the capacitor only for a time t ∼ RC

and will disappear when the charge has had time to distribute itself uniformly throughout the circuit. An
electric field can only exist in the presence of a non-uniform charge distribution.
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If we take a slab of any medium and place a charge of density q at a point within the slab, the medium
will behave as an RC circuit and the equation

q = q0e
−t/RC

becomes

q = q0 e
−σ/ωε → q0 e

−σt/ε

(
ε ≡ C

σ ≡ 1/R

)

The charge will distribute itself uniformly in a time t ∼ ε/σ, and the electric field will be maintained
for that time only. The time ε/σ is called the relaxation time of the medium (RC time of the electrical
circuit) and it is a measure of the maximum time for which an electric field can be maintained before the
charge distribution becomes uniform.

Any electric field of a frequency ν, where 1/ν = t > ε/σ, will not be maintained; only a high
frequency field where 1/ν = t < ε/σ will establish itself.

9.11 Impedance of a Conducting Medium to Electromagnetic Waves

The impedance of a lossless medium is a real quantity. For the transmission line of Chapter 8 the
characteristic impedance

Z0 =
V+

I+
=

√
L0

C0
Ω;

for an electromagnetic wave in a dielectric

Z =
Ex

Hy
=

√
μ

ε
Ω

with Ex and Hy in phase.
We saw in the case of the transmission line that when the loss mechanisms of a series resistance R0

and a shunt conductance G0 were introduced the impedance became the complex quantity

Z =

√
R0 + iωL0

G0 + iωC0

We now ask what will be the impedance of a conducting medium of properties μ, ε and σ to electro-
magnetic waves? If the ratio of Ex to Hy is a complex quantity, it implies that a phase difference exists
between the two field vectors.

We have already seen that in a conductor

Ex = E0e
iωte−γz
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where γ = (1 + i)(ωμσ/2)1/2, and we shall now write Hy = H0e
i(ωt−φ)e−γz, suggesting that Hy lags

Ex by a phase angle φ. This gives the impedance of the conductor as

Zc =
Ex

Hy
=

E0

H0
eiφ ohms

Equation (9.1a) gives

∂Ex

∂z
= −μ

∂Hy

∂t

so that

−γEx = −iωμHy

and

Zc =
Ex

Hy
=

iωμ

γ
=

i(ωμ)

(1 + i)(ωμσ/2)1/2
=

i(1 − i)

(1 + i)(1 − i)

(
2ωμ
σ

)1/2

=
(1 + i)

2

(
2ωμ
σ

)1/2

=
1 + i√

2

(ωμ
σ

)1/2

=
(ωμ

σ

)1/2
(

1√
2
+ i

1√
2

)
=

(ωμ
σ

)1/2
eiφ ohms

a vector of magnitude (ωμ/σ)1/2 and phase angle φ = 45◦. Thus the magnitude

Zc =
E0

H0
=

(ωμ
σ

)1/2
ohms (9.7)

and Hy lags Ex by 45◦ giving

Sav =
1
2

E0H0 cos 45◦

We can also express Zc by

Zc = R + iX =
(ωμ

2σ

)1/2
+ i

(ωμ
2σ

)1/2
(9.8)

and also write it

Zc =
1 + i√

2

(ωμ
σ

)1/2

=

√
μ0

ε0

ε0

ε

μ

μ0

ωε

σ
eiφ

(9.9)
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of magnitude

|Zc| = 376.6Ω
√

μr

εr

√
ωε

σ

At a wavelength λ = 10−1m, i.e. at a frequency ν = 3000 MHz, the value of ωε/σ for copper is
2.9×10−9 and μr ≈ εr ≈ 1. This gives a magnitude Zc = 0.02Ω at this frequency; for σ = ∞, Zc = 0,
and the electric field vector Ex vanishes, so we can say that when Zc is small or zero the conductor
behaves as a short circuit to the electric field. This sets up large conduction currents and the magnetic
energy is increased.

Worked Example

Using equations (9.7) and (9.9) and information from the paragraph immediately above this worked
example show that for a plane 1000 MHz wave travelling in air with E0 = 1V · m−1 incident normally
on a large copper sheet, the real part of the copper impedance is R(Zc) = 8.2 × 10−3 Ω.

Solution

Equation (9.7) gives

Sav =
1
2

E0H0 cos 45◦ =
1
2

H2
0R(Zc) (from 9.7)

∴ R(Zc) = (E0/H0) cos 45◦

or

E0 =
H0

cos 45◦
R(Zc).

Using equation (9.9) and a value of ωε/σ = 1/3rd of that in the paragraph so that ωε/σ = 9.7 × 10−10

we have

R(Zc) =
1√
2

377.6
√

μr

εr
=

√
9.7 × 10−10 ≈ 8.2 × 10−3 ohms where μr ≈ εr ≈ 1.

In a dielectric, the impedance

Z =
Ex

Hy
=

√
μ

ε
ohms

led to the equivalence of the electric and magnetic field energy densities; that is, 1
2μH2

y = 1
2εE2

x . In a
conductor, the magnitude of the impedance

Zc =

∣∣∣∣Ex

Hy

∣∣∣∣ =
(ωμ

σ

)1/2
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so that the ratio of the magnetic to the electric field energy density in the wave is

1
2μH2

y
1
2εE2

x

=
μ

ε

σ

ωμ
=

σ

ωε

We already know that this ratio is very large for a conductor for it is the ratio of conduction to dis-
placement currents, so that in a conductor the magnetic field energy dominates the electric field energy
and increases as the electric field energy decreases.

9.12 Reflection and Transmission of Electromagnetic Waves at a Boundary

9.12.1 Normal Incidence

An infinite plane boundary separates two media of impedances Z1 and Z2 (real or complex) in Figure 9.7.
The electromagnetic wave normal to the boundary has the components shown where subscripts i, r

and t denote incident, reflected and transmitted, respectively. Note that the vector direction (Er × Hr)
must be opposite to that of (Ei × Hi) to satisfy the energy flow condition of the Poynting vector.

The boundary conditions, from electromagnetic theory, are that the components of the field vectors E
and H tangential or parallel to the boundary are continuous across the boundary.

Thus

Ei + Er = Et

and

Hi + Hr = Ht

Incident

Ei

Er

Et

Er

Z1 < Z2

Z2 < Z1

Hi

Hr

Z1 Z2

Ht
Hr

Internal reflection
Transmitted

External reflection

Figure 9.7 Reflection and transmission of an electromagnetic wave incident normally on a plane between media
of impedances Z1 and Z2. The Poynting vector of the reflected wave (E × H)r shows that either E or H may be
reversed in phase, depending on the relative magnitudes of Z1 and Z2.
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where

Ei

Hi
= Z1,

Er

Hr
= −Z1 and

Et

Ht
= Z2

From these relations it is easy to show that the amplitude reflection coefficient

R =
Er

Ei
=

Z2 − Z1

Z2 + Z1
(9.10)

and the amplitude transmission coefficient

T =
Et

Ei
=

2Z2

Z2 + Z1
(9.11)

in agreement with the reflection and transmission coefficients we have found for the acoustic pressure p
(Chapter 7) and voltage V (Chapter 8). If the wave is travelling in air and strikes a perfect conductor of
Z2 = 0 at normal incidence then

Er

Ei
=

Z2 − Z1

Z2 + Z1
= −1

giving complete reflection and

Et

Ei
=

2Z2

Z2 + Z1
= 0

Thus, good conductors are very good reflectors of electromagnetic waves, e.g. lightwaves are well
reflected from metal surfaces.

Worked Example

Show that when a plane electromagnetic wave travelling in air is reflected normally from a plane con-
ducting surface the transmitted magnetic field value Ht ≈ 2Hi and that a magnetic standing wave exists
in air with a very large standing wave ratio. This is analogous to a short-circuited transmission line. Show
that the doubled value 2Hi in the wave of the worked example at the end of section 9.11 delivers a power
of Sav = 1.16 × 10−7 watts·m−2 to the copper sheet.

Solution

From equation (9.11) we can calculate TH = Ht/Hi. Writing Zc as the conductor impedance we have
Et = ZcHt and Ei = ZairHi. With T = Et/Ei = 2Zc/Zc + Zair we have

TH =
Ht

Hi
=

EtZair

EiZc
=

Zair

Zc

2Zc

Zc + Zair
=

2Zair

Zc + Zair

For large σ, Zc = 0 and TH = 2Zair/Zair = 2 ∴ Ht = 2Hi.
Since H = 2Hi we may write

Sav =
1
2

H2
0R(Zc) =

1
2

H2
copperR(Zc)
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For the wave in the worked example at the end of section 9.11, Ec = 1V · m−1 ∴ E0/H0 =
377.6 ohm, and 2H2

copper = 2E2
0/(377.6)2 = 2/(377.6)2 so

Sav =
2

(377.6)2
R(Zcopper) =

2
(377.6)2

× (8.2 × 10−3) = 1.16 · 10−7 watts ·m−2.

9.13 Reflection from a Conductor (Normal Incidence)

For Z2 a conductor and Z1 free space, the refractive index

n =
Z1

Z2
=

β

α+ iα

is complex, where

β =

√
μ0

ε0
ohms

and

α =
(ωμ

2σ

)1/2
ohms

A complex refractive index must always be interpreted in terms of absorption because a complex
impedance is determined by a complex propagation constant, e.g. here Z2 = iωμ/γ, so that

n =
Z1

Z2
=

√
μ0

ε0

1
iωμ

(1 + i)
(ωμσ

2

)1/2
= (1 − i)

(
σ

2ωε0

)1/2

where

(μμ0)
1/2

μ
≈ 1

The ratio Er/Ei is therefore complex (there is a phase difference between the incident and reflected
vectors) with a value

Er

Ei
=

Z2 − Z1

Z2 + Z1
=

α+ iα− β

α+ iα+ β
=

1 − β/α+ i

1 + β/α+ i

where β/α � 1.
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Since Er/Ei is complex, the value of the reflected intensity Ir = (Er/Ei)
2 is found by taking the ratio

the squares of the moduli of the numerator and the denominator, so that

Ir =
|Er|2
|Ei|2

=
|Z2 − Z1|2
|Z2 + Z1|2

=
(1 − β/α)2 + 1
(1 + β/α)2 + 1

= 1 − 4β/α
2 + 2β/α+ (β/α)2

→ 1 − 4α
β

(forβ/α � 1)

so that

Ir = 1 − 4
(ωμ

2σ

)1/2
(
ε0

μ0

)1/2

≈ 1 − 2

√
2ωε0

σ
≈ 1 −

√
8ωε0

σ

For copper σ = 6 × 107 (s·m−1) and (2ωε0/σ)
1/2 ≈ 0.01 at infra-red frequencies. The emission from

an electric heater at 103 K has a peak at λ ≈ 2.5 × 10−6 m. A metal reflector behind the heater filament
reflects ≈ 97% of these infra-red rays with 3% entering the metal to be lost as joule heating between
the metal surface and the skin depth. Thus the factor (8ωε0/σ)

1/2, the ratio of displacement to ohmic
current, gives direct information on the reflectivity of a metal as well as indicating the amount of energy
absorbed.

Problem 9.1. The solutions to the e.m. wave equations are given in Figure 9.3 as

Ex = E0 sin
2π
λ

(vt − z)

and

Hy = H0 sin
2π
λ

(vt − z)

Use equations (9.1a) and (9.2a) to prove that they have the same wavelength and phase as shown in
Figure 9.3.

Problem 9.2. Show that the concept of B2/2μ (magnetic energy per unit volume) as a magnetic pressure
accounts for the fact that two parallel wires carrying currents in the same direction are forced together
and that reversing one current will force them apart. (Consider a point midway between the two wires.)
Show that it also explains the motion of a conductor carrying a current which is situated in a steady
externally applied magnetic field.

Problem 9.3. At a distance r from a charge e on a particle of mass m the electric field value is E =
e/4πε0r2. Show by integrating the electrostatic energy density over the spherical volume of radius a to
infinity and equating it to the value mc2 that the ‘classical’ radius of the electron is given by

a = 1.41 × 10−15m

Problem 9.4. The rate of generation of heat in a long cylindrical wire carrying a current I is I2R, where
R is the resistance of the wire. Show that this joule heating can be described in terms of the flow of
energy into the wire from surrounding space and is equal to the product of the Poynting vector and the
surface area of the wire.
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Problem 9.5. The plane-polarized electromagnetic wave (Ex, Hy) of this chapter travels in free space.
Show that its Poynting vector (energy flow in watts per square metre) is given by

S = ExHy = c

(
1
2
ε0E2

x +
1
2
μ0H2

y

)
= cε0E2

x

where c is the velocity of light. The intensity in such a wave is given by

I = Sav = cε0E2 =
1
2

cε0E2
max

Show that

Sav = 1.327 × 10−3E2
max

Emax = 27.45S
1/2

Vm−1

Hmax = 7.3 × 10−2S
1/2
av A m−1

Problem 9.6. A light pulse from a ruby laser consists of a linearly polarized wavetrain of constant
amplitude lasting for 10−4 s and carrying energy of 0.3 J. The diameter of the circular cross section of
the beam is 5 × 10−3m. Use the results of Problem 9.5 to calculate the energy density in the beam to
show that the root mean square value of the electric field in the wave is

2.4 × 105Vm−1

Problem 9.7. One square metre of the earth’s surface is illuminated by the sun at normal incidence by an
energy flux of 1.35 kW. Show that the amplitude of the electric field at the earth’s surface is 1010 V m−1

and that the associated magnetic field in the wave has an amplitude of 2.7 A m−1 (See Problem 9.5).
The electric field energy density 1

2εE2 has the dimensions of a pressure. Calculate the radiation pressure
of sunlight upon the earth.

Problem 9.8. If the total power lost by the sun is equal to the power received per unit area of the earth’s
surface multiplied by the surface area of a sphere of radius equal to the Earth–Sun distance (15×107 km),
show that the mass per second converted to radiant energy and lost by the sun is 4.2 × 109 kg. (See
Problem 9.5.)

Problem 9.9. A radio station radiates an average power of 105 W uniformly over a hemisphere con-
centric with the station. Find the magnitude of the Poynting vector and the amplitude of the electric and
magnetic fields of the plane electromagnetic wave at a point 10 km from the station. (See Problem 9.5.)

Problem 9.10. Show that when a group of electromagnetic waves of nearly equal frequencies propagates
in a conducting medium the group velocity is twice the wave velocity. Use wave number k = (ωμσ

2 )1/2

Problem 9.11. A medium has a conductivity σ = 10−1 S m−1 and a relative permittivity εr = 50,
which is constant with frequency. If the relative permeability μr = 1, is the medium a conductor or a
dielectric at a frequency of (a) 50 kHz, and (b) 104 MHz?

[ε0 = (36π × 109)−1 Fm−1; μ0 = 4π × 10−7 Hm−1]
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Answer : (a) σ/ωε = 720 (conductor)

(b) σ/ωε = 3.6 × 10−3 (dielectric).

Problem 9.12. The electrical properties of the Atlantic Ocean are given by

εr = 81, μr = 1, σ = 4.3 Sm−1

Show that it is a conductor up to a frequency of about 10 MHz. What is the longest electromagnetic
wavelength you would expect to propagate under water?

Problem 9.13. For a good conductor εr = μr = 1. Show that when an electromagnetic wave is reflected
normally from such a conducting surface its fractional loss of energy (1 – reflection coefficient Ir) is
≈

√
8ωε/σ. Note that the ratio of the displacement current density to the conduction current density is

therefore a direct measure of the reflectivity of the surface.

Problem 9.14. Show that when light travelling in free space is normally incident on the surface of a
dielectric of refractive index n the reflected intensity

Ir =

(
Er

Ei

)2

=

(
1 − n
1 + n

)2

and the transmitted intensity

It =
ZiE2

t

ZtE2
i

=
4n

(1 + n)2

(Note Ir + It = 1.)

Problem 9.15. Show that if the medium of Problem 9.14 is glass (n = 1.5) then Ir = 4% and It = 96%.
If an electromagnetic wave of 100 MHz is normally incident on water (εr = 81) show that Ir = 65%
and It = 35%.

Problem 9.16. Light passes normally through a glass plate suffering only one air-to-glass and one glass-
to-air reflection. What is the loss of intensity?

Problem 9.17. A radiating antenna in simplified form is just a length x0 of wire in which an oscillating
current is maintained. The expression for the radiating power of an oscillating electron is

P =
dE
dt

=
q2ω4x2

0

12πε0c3

where c = 3 × 108 m·s−1, q is the electron charge and ω is the oscillation frequency. The current I in
the antenna may be written I0 = ωq. If P = 1

2 RI2
0 show that the radiation resistance of the antenna is

given by

R =
2π
3

√
μ0

ε0

(x0

λ

)2
= 787

(x0

λ

)2
Ω

where λ is the radiated wavelength (an expression valid for λ � x0).
If the antenna is 30 m long and transmits at a frequency of 5×105 Hz with a root mean square current

of 20 A, show that its radiation resistance is 1.97 Ω and that the power radiated is 400 W. (Verify that
λ � x0.)
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10
Waves in More Than One Dimension

Introduction

This chapter extends our treatment of one-dimensional waves into two- and three-dimensional waves
and discusses how waves behave in wave guides. You will see how in wave guides the solution consists
of a travelling wave in one dimension together with standing wave patterns in the other dimensions.
A calculation of the number of normal modes in three-dimensional space and the energy of each mode
leads to a breakdown of classical physics in the ‘ultra violet’ catastrophe and its solution via Planck’s
radiation law. Planck’s constant h, together with Heisenberg’s Uncertainty Principle, places a limit on
the smallest space which a particle of given energy may occupy.

10.1 Plane Wave Representation in Two and Three Dimensions

Figure 10.1 shows that in two dimensions waves of velocity c may be represented by lines of constant
phase propagating in a direction k which is normal to each line, where the magnitude of k is the wave
number k = 2π/λ.

The direction cosines of k are given by

l =
k1

k
, m =

k2

k
where k2 = k2

1 + k2
2

and any point r(x, y) on the line of constant phase satisfies the equation

lx + my = p = ct

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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y

x

2
λ

lx + my = p = ct

r(x · y) k  r = k1x + k2y = kp

Crest
Trough

l =

m =

k2

k2k1

k1
k k

k

p

Figure 10.1 Crests and troughs of a two-dimensional plane wave propagating in a general direction k (direction
cosines l and m). The wave is specified by lx+my = p = ct, where p is its perpendicular distance from the origin,
travelled in a time t at a velocity c.

where p is the perpendicular distance from the line to the origin. The displacements at all points r(x, y)
on a given line are in phase and the phase difference φ between the origin and a given line is

φ =
2π
λ
(path difference) =

2π
λ

p = k · r = k1x + k2y

= kp

Hence, the bracket (ωt − φ) = (ωt − kx) used in a one-dimensional wave is replaced by (ωt − k · r)
in waves of more than one dimension, e.g. we shall use the exponential expression

ei(ωt−k·r)

In three dimensions all points r(x, y, z) in a given wavefront will lie on planes of constant phase
satisfying the equation

lx + my + nz = p = ct

where the vector k which is normal to the plane and in the direction of propagation has direction
cosines

l =
k1

k
, m =

k2

k
, n =

k3

k

(so that k2 = k2
1 + k2

2 + k2
3) and the perpendicular distance p is given by

kp = k · r = k1x + k2y + k3z

10.2 Wave Equation in Two Dimensions

We shall consider waves propagating on a stretched plane membrane of negligible thickness having a
mass ρ per unit area and stretched under a uniform tension S. This means that if a line of unit length is
drawn in the surface of the membrane, then the material on one side of this line exerts a force S (per unit
length) on the material on the other side in a direction perpendicular to that of the line.
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x
(a) (b)

Sδx
A

B

CD

Sδx

Sδx

Sδx

δx

Sδy
δy

Sδy

Sδy

Sδyz

y

Figure 10.2 Rectangular element of a uniform membrane vibrating in the z direction subject to one restoring
force, Sδx, along its sides of length δy and another, Sδy, along its sides of length δx.

If the equilibrium position of the membrane is the xy plane the vibration displacements perpendicular
to this plane will be given by z where z depends on the position x, y. In Figure 10.2a where the small
rectangular element ABCD of sides δx and δy is vibrating, forces Sδx and Sδy are shown acting on the
sides in directions which tend to restore the element to its equilibrium position.

In deriving the equation for waves on a string we saw that the tension T along a curved element of
string of length dx produced a force perpendicular to x of

S
∂2y
∂x2

dx

where y was the perpendicular displacement. Here in Figure 10.2b by exactly similar arguments we see
that a force Sδy acting on a membrane element of length δx produces a force

Sδy
∂2z
∂x2

δx,

where z is the perpendicular displacement, whilst another force Sδx acting on a membrane element of
length δy produces a force

Sδx
∂2z
∂y2

δy

The sum of these restoring forces which act in the z direction is equal to the mass of the element ρδxδy
times its perpendicular acceleration in the z direction, so that

S
∂2z
∂x2

δxδy + S
∂2z
∂y2

δxδy = ρ δxδy
∂2y
∂t2

giving the wave equation in two dimensions as

∂2z
∂x2

+
∂2z
∂y2

=
ρ

S
∂2z
∂t2

=
1
c2

∂2z
∂t2
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where

c2 =
S
ρ

The displacement of waves propagating on this membrane will be given by

z = A ei(ωt−k·r) = A ei[ωt−(k1x+k2y)]

where

k2 = k2
1 + k2

2

The reader should verify that this expression for z is indeed a solution to the two-dimensional wave
equation when ω = ck.

10.3 Wave Guides

10.3.1 Reflection of a 2D Wave at Rigid Boundaries

Let us first consider a 2D wave propagating in a vector direction k(k1, k2) in the xy plane along a mem-
brane of width b stretched under a tension S between two long rigid rods which present an infinite
impedance to the wave.

We see from Figure 10.3 that upon reflection from the line y = b the component k1 remains unaffected
whilst k2 is reversed to −k2. Reflection at y = 0 leaves k1 unaffected whilst −k2 is reversed to its original
value k2. The wave system on the membrane will therefore be given by the superposition of the incident
and reflected waves; that is, by

z = A1 e
i[ωt−(k1x+k2y)] + A2 e

i[ωt−(k1x−k2y)] (10.1)

y = b

y = 0

Infinite
impedance

Infinite
impedance

k2

–k2

k2
k1

k1

k1

k

k
x

k

Figure 10.3 Propagation of a two-dimensional wave along a stretched membrane with infinite impedances at
y = 0 and y = b giving reversal of k2 at each reflection.



�

�

“Pain-Driver” — 2014/12/30 — 13:13 — page 213 — #5
�

�

�

�

�

�

Waves in More Than One Dimension 213

subject to the boundary conditions that

z = 0 at y = 0 and y = b

the positions of the frame of infinite impedance.
The condition z = 0 at y = 0 requires

A2 = −A1

and z = 0 at y = b gives

sin k2b = 0

or

k2 =
nπ
b

With these values of A2 and k2 the displacement of the wave system is given by the real part of z, i.e.

z = +2 A1 sin k2y sin(ωt − k1x)

which represents a wave travelling along the x direction with a phase velocity

vp =
ω

k1
=

(
k
k1

)
v

where v, the velocity on an infinitely wide membrane, is given by

v =
ω

k
which is < vp

because

k2 = k2
1 + k2

2

Now

k2 = k2
1 +

n2π2

b2

so

k1 =

(
k2 − n2π2

b2

)1/2

=

(
ω2

v2
− n2π2

b2

)1/2

and the group velocity for the wave in the x direction

vg =
∂ω

∂k1
=

k1

ω
v2 =

(
k1

k

)
v
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giving the product

vpvg = v2

Since k1 must be real for the wave to propagate we have, from

k2
1 = k2 − n2π2

b2

the condition that

k2 =
ω2

v2
≥ n2π2

b2

that is

ω ≥ nπv
b

or

ν ≥ nv
2b

,

where n defines the mode number in the y direction. Thus, only waves of certain frequencies ν are allowed
to propagate along the membrane which acts as a wave guide.

There is a cut-off frequency nπv/b for each mode of number n and the wave guide acts as a frequency
filter (recall the discussion on similar behaviour in wave propagation on the loaded string in Chapter 4).
If ν = nv/2b, the presence of the sin k2y term in the expression for the displacement z shows that the
amplitude varies across the transverse y direction as shown in Figure 10.4 for the mode values n = 1, 2, 3.
Thus, along any direction in which the waves meet rigid boundaries a standing wave system will be set
up analogous to that on a string of fixed length and we shall discuss the implication of this in the section
on normal modes and the method of separation of variables.

Wave guides are used for all wave systems, particularly in those with acoustical and electromagnetic
applications. Fibre optics is based on wave guide principles, but the major use of wave guides has been
with electromagnetic waves in telecommunications. Here the reflecting surfaces are the sides of a copper

y = b

n = 1 n = 2 n = 3 x

y = 0

Figure 10.4 Variation of amplitude with y direction for two-dimensional wave propagating along the membrane
of Figure 9.3. Normal modes (n = 1, 2 and 3 shown) are set up along any axis bounded by infinite impedances.
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tube of circular or rectangular cross section. Note that in this case the free space velocity becomes the
velocity of light

c =
ω

k
< vp

the phase velocity, but the relation vpvg = c2 ensures that energy in the wave always travels with a group
velocity vg < c.

If ν < nv/2b, k2
1 becomes negative to give ±ik1 and the travelling wave in equation 10.1 has the terms

(A1 + A2)e
i(ωt−k1x) = (A1 + A2)e

−k1xeiωt

which rapidly extinguishes the wave in the x direction.

Worked Example

a

x

y

z

x = a

Ez only

k (kx Ky) k (–kx Ky)

x = 0
Plane conductor

Plane conductor

θ

An electromagnetic wave loses negligible energy when reflected from a highly conducting surface. With
repeated reflections it may travel along a transmission line or wave guide consisting of two parallel,
infinitely conducting planes (separation a). If the wave in the Figure above is plane polarized, so that
only Ez exists, then the propagating direction k lies wholly in the xy plane. The boundary conditions
require that the total tangential electric field Ez is zero at the conducting surfaces x = 0 and x = a.
Show that the first boundary condition allows Ez to be written Ez = E0(e

ikxx − e−ikxx)ei(kyy−ωt), where
kx = k cos θ and ky = k sin θ and the second boundary condition requires kx = nπ/a.

Solution

This problem is the electrical equivalent of the two-dimensional wave guide in Problem 10.3
(Figure 10.3). The electrical field Ez between the two plane boundaries is the superposition of the incident
and reflected waves written as

Ez = E1 e
i(ωt−(k1x+k2y)) + E2 e

i(ωt−(−k1x+k2y))

where k1x = kx = k cos θ and k2y = ky = k sin θ. The boundary condition Ez = 0 at x = 0 gives

(E1 + E2)e
i(ωt−kyy) = 0
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which is true for any t and y if E1 = −E2 = E0. Thus

Ez = E0(e
−ikxa − e−ikxa)ei(ωt−kyy) = 0

i.e.

Ez = E0 sin kxa ei(ωt−kyy) = 0

which is true for any t and y if sin kxa = 0 i.e. kx = nπ/a. We then have a travelling wave

Ez = E0 e
i(ωt−kyy)

in the y direction and a standing wave n = 1 between x = 0 and x = a in the x direction.

10.4 Normal Modes and the Method of Separation of Variables

We have just seen that when waves propagate in more than one dimension a standing wave system will
be set up along any axis which is bounded by infinite impedances.

In Chapter 5 we found that standing waves could exist on a string of fixed length l where the
displacement was of the form

y = A sin
cos

}
kx sin

cos

}
ωnt,

where A is constant and where sin
cos} means that either solution may be used to fit the boundary conditions

in space and time. When the string is fixed at both ends, the condition y = 0 at x = 0 removes the cos kx
solution, and y = 0 at x = l requires knl = nπ or kn = nπ/l = 2π/λn, giving l = nλn/2. Since the wave
velocity c = νnλn, this permits frequencies ωn = 2πνn = πnc/l, defined as normal modes of vibration
or eigenfrequencies.

We can obtain this solution in a way which allows us to extend the method to waves in more than one
dimension. We have seen that the wave equation

∂2φ

∂x2
=

1
c2

∂2φ

∂t2

has a solution which is the product of two terms, one a function of x only and the other a function
of t only.

Let us write φ = X(x)T(t) and apply the method known as separation of variables.
The wave equation then becomes

∂2X
∂x2

· T =
1
c2

X
∂2T
∂t2

or

XxxT =
1
c2

XTtt
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where the double subscript refers to double differentiation with respect to the variables. Dividing by
φ = X(x)T(t) we have

Xxx

X
=

1
c2

Ttt

T

where the left-hand side depends on x only and the right-hand side depends on t only. However, both x
and t are independent variables and the equality between both sides can only be true when both sides are
independent of x and t and are equal to a constant, which we shall take, for convenience, as −k2. Thus

Xxx

X
= −k2, giving Xxx + k2X = 0

and

1
c2

Ttt

T
= −k2, giving Ttt + c2k2T = 0

X(x) is therefore of the form e±ikx and T(t) is of the form e±ickt, so that φ = A e±ikxe±ickt, where A is
constant, and we choose a particular solution in a form already familiar to us by writing

φ = A ei(ckt−kx)

= A ei(ωt−kx),

where ω = ck, or we can write

φ = Asin
cos

}
kxsincos

}
ckt

as above, where for fixed ends only a sine solution is allowed for x.

10.5 Two-Dimensional Case

In extending this method to waves in two dimensions we consider the wave equation in the form

∂2φ

∂x2
+

∂2φ

∂y2
=

1
c2

∂2φ

∂t2

and we write φ = X(x)Y(y)T(t), where Y(y) is a function of y only.
Differentiating twice and dividing by φ = XYT gives

Xxx

X
+

Yyy

Y
=

1
c2

Ttt

T

where the left-hand side depends on x and y only and the right-hand side depends on t only. Since x,
y and t are independent variables each side must be equal to a constant, −k2 say. This means that the
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left-hand side terms in x and y differ by only a constant for all x and y, so that each term is itself equal to
a constant. Thus we can write

Xxx

X
= −k2

1,
Yyy

Y
= −k2

2

and

1
c2

Ttt

T
= −(k2

1 + k2
2) = −k2

giving

Xxx + k2
1X = 0

Yyy + k2
2Y = 0

Ttt + c2k2T = 0

or

φ = Ae±ik1xe±ik2ye±ickt

where k2 = k2
1 + k2

2. Typically we may write

φ = Asin
cos

}
k1xsincos

}
k2ysincos

}
ckt.

for example φ = A sin k2y sin(ωt − k1x), a standing wave in the y direction and a travelling wave in the
x direction. The standing wave is a normal mode.

10.6 Three-Dimensional Case

The three-dimensional treatment is merely a further extension. The wave equation is

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
=

1
c2

∂2φ

∂t2

with a solution

φ = X(x)Y(y)Z(z)T(t)

yielding

φ = Asin
cos

}
k1xsincos

}
k2ysincos

}
k3zsincos

}
ckt,

where k2
1 + k2

2 + k2
3 = k2; for example φ = A sin k2y sin k3z cos(ωt − k1x), standing waves in the y and z

directions and a travelling wave in the x direction. The standing waves are normal modes.
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Using vector notation we may write

φ = A ei(ωt−k·r), where k · r = k1x + k2y + k3z

10.7 Normal Modes in Two Dimensions on a Rectangular Membrane

Suppose waves proceed in a general direction k on the rectangular membrane of sides a and b shown in
Figure 10.5. Each dotted wave line is separated by a distance λ/2 and a standing wave system will exist
whenever a = n1AA′ and b = n2BB

′, where n1 and n2 are integers.
But

AA′ =
λ

2 cosα
=

λ

2
k
k1

=
λ

2
2π
λ

1
k1

=
π

k1

so that

a =
n1π

k1
and k1 =

n1π

a
.

Similarly

k2 =
n2π

b

Hence

k2 = k2
1 + k2

2 =
4π2

λ2
= π2

(
n2

1

a2
+

n2
2

b2

)

or

2
λ
=

√
n2

1

a2
+

n2
2

b2

Bʹ

Bʹ

B

B

a = n1 AAʹ = n1λ/2 cos α

b
 =

 n
2 

B
B

ʹ =
 n

2λ
/2

 c
os

 β k

2

α
β

λ

Figure 10.5 Normal modes on a rectangular membrane in a direction k satisfying boundary conditions of zero
displacement at the edges of length a = n1λ/2 cosα and b = n2λ/2 cosβ.
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defining the frequency of the n1th mode on the x axis and the n2th mode on the y axis, that is, the (n1n2)
normal mode, as

ν =
c
2

√
n2

1

a2
+

n2
2

b2
, where c2 =

S
ρ

If k is not normal to the direction of either a or b we can write the general solution for the waves as

z = A sin
cos

}
k1x sin

cos

}
k2y sin

cos

}
ckt.

with the boundary conditions z = 0 at x = 0 and a; z = 0 at y = 0 and b.
The condition z = 0 at x = y = 0 requires a sin k1x sin k2y term, and the condition z = 0 at x = a

defines k1 = n1π/a. The condition z = 0 at y = b gives k2 = n2π/b, so that

z = A sin
n1πx

a
sin

n2πy
b

sin ckt

The fundamental vibration is given by n1 = 1, n2 = 1, so that

ν =

√(
1
a2

+
1
b2

)
S

4ρ

In the general mode (n1n2) zero displacement or nodal lines occur at

x = 0,
a
n1

,
2a
n1

, . . . a

and

y = 0,
b
n2

,
2b
n2

, . . . b

Some of these normal modes are shown in Figure 10.6, where the shaded and plain areas have opposite
displacements as shown.

The complete solution for a general displacement would be the sum of individual normal modes, as
with the simpler case of waves on a string (see Chapter 11 on Fourier Methods) where boundary condi-
tions of space and time would have to be met. Several modes of different values (n1n2)may have the same
frequency, e.g. in a square membrane the modes (4,7) (7,4) (1,8) and (8,1) all have equal frequencies.
If the membrane is rectangular and a = 3b, modes (3,3) and (9,1) have equal frequencies.

These modes are then said to be degenerate, a term used in describing equal energy levels for electrons
in an atom which are described by different quantum numbers.
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(1,1)

(1,1)

(2,1)

(2,1)

(3,1)

(3,1)

(3,2) (3,3) (2,4)

Figure 10.6 Some normal modes on a rectangular membrane with shaded and clear sections having opposite
sinusoidal displacements as indicated.

10.8 Normal Modes in Three Dimensions

In three dimensions a normal mode is described by the numbers n1, n2, n3, with a frequency

ν =
c
2

√
n2

1

l21
+

n2
2

l22
+

n2
3

l23
, (10.2)

where l1, l2 and l3 are the lengths of the sides of the rectangular enclosure. If we now form a rectangular
lattice with the x, y and z axes marked off in units of

c
2l1

,
c

2l2
and

c
2l3

respectively (Figure 10.7), we can consider a vector of components n1 units in the x direction, n2 units
in the y direction and n3 units in the z direction to have a length

ν =
c
2

√
n2

1

l21
+

n2
2

l2
2

+
n2

3

l23

Each frequency may thus be represented by a line joining the origin to a point cn1/2l1, cn2/2l2, cn3/2l3
in the rectangular lattice.
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n1c

n1
2

l1
2

n2
2

l2
2

n3
2

l3
2

n2c n3c

2l1

2l1

2
+ +cυ =

Vector length gives
allowed frequency

c
c

c

1/2

2l2

2l2

2l3

2l3

, ,

Figure 10.7 Lattice of rectangular cells in frequency space. The length of the vector joining the origin to any
cell corner is the value of the frequency of an allowed normal mode. The vector direction gives the propagation
direction of that particular mode.

The length of the line gives the magnitude of the frequency, and the vector direction gives the direction
of the standing waves.

Each point will be at the corner of a rectangular unit cell of sides c/2l1, c/2l2 and c/2l3 with a volume
c3/8l1l2l3. There are as many cells as points (i.e. as frequencies) since each cell has eight points at its
corners and each point serves as a corner to eight cells.

A very important question now arises: how many normal modes (stationary states in quantum
mechanics) can exist in the frequency range ν to ν + dν?

The answer to this question is the total number of all those positive integers n1, n2, n3 for which, from
equation (10.2),

ν2 <
c2

4

(
n2

1

l21
+

n2
2

l22
+

n2
3

l23

)
< (ν + dν)2

This total is the number of possible points (n1, n2, n3) lying in the positive octant between two con-
centric spheres of radii ν and ν + dν. The other octants will merely repeat the positive octant values
because the n’s appear as squared quantities.

Hence the total number of possible points or cells will be

1

8

(volume of spherical shell)

volume of cell

=
4πν2dν

8
· 8l1l2l3

c3

= 4πl1l2l3 ·
ν2dν

c3

so that the number of possible normal modes in the frequency range ν to ν + dν per unit volume of the
enclosure

=
4πν2dν

c3
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Note that this result, per unit volume of the enclosure, is independent of any particular system; we shall
consider two very important applications after the next section.

10.9 3D Normal Frequency Modes and the de Broglie Wavelength

The number of normal modes in the frequency range ν to ν + dν per unit volume is n = 4πν2dν/c3

where c is the velocity. In a sense, Figure 10.7 combines frequency ν and volume (xyz) spaces because
the number of frequencies equals the number of unit cells in the volume V . Such a combination of ν and
V spaces is called ‘phase space’.

Each dimension of ‘phase space’ represents a coordinate capable of taking up energy. Another form
of ‘phase space’ is pV space where p is the momentum. A quantum particle of momentum p = hν/c
where h is Planck’s constant and c is the velocity of light allows a straightfoward conversion from νV
space to pV space where n = 4πp2dp/h3 per unit volume and where the momentum range is p to p+dp.
These expressions give the number of unit phase space cells per unit volume available to be occupied in
statistical distributions.

A statistical distribution answers the question: ‘How many gas particles in a gas at temperature T are
there in the three-dimensional velocity v(vx, vy, vz) to dv(vx, vy, vz) range and the volume range dxdydz?’
There are two parts to every statistical distribution. The first part is the number of unit phase cells
per unit volume available: the second part is the average occupation of each unit cell by a particle.
The number 4πp2dp/h3 gives the first part of all statistical distributions.

There are three statistical distributions, the classical distribution, Maxwell–Boltzmann and the quan-
tum distributions Fermi–Dirac and Bose–Einstein. The Maxwell–Boltzmann is classical because there
are always many phase space cells available to a particle in the given momentum range. Fermi–Dirac is
highly restricted in phase space. Bose–Einstein is not restrictive in phase space but has a quantum, not a
classical, occupation number. Planck’s Radiation Law is a example of a Bose–Einstein distribution.

The first part of each distribution is ni where ni the number of particles equals the number of space
cells per unit volume in the momentum range p to p + dp, that is ni = 4πp2dp/h3. Note that 4πp2dp is
the volume of the shell in momentum space between spheres of radii p and p + dp.

Over the space volume V there are 4πp2dpV/h3 phase space cells in the momentum range p
to p + dp. But Heisenberg’s Uncertainty Principle (section 6.3) tells us that (ΔxΔp) ≈ h so
(ΔxΔpx)(ΔyΔpy)(ΔzΔpz) ≈ h3 that is, the ‘volume’ of a cell in pV phase space.

This volume is the smallest acceptable volume which a particle with momentum p in this range may
occupy for it defines the volume associated with a particle as (h/Δpx)

3 ≈ (Δx)3 ≈ λ3
dB where λdB is

the de Broglie wavelength. λdB must not exceed h/Δpx because particles in statistical distributions must
be free, that is, have only kinetic and no potential energy arising from interactions with other particles
which would occur from the overlap of de Broglie matter waves. The average occupation factor for each
of the three distributions is different and a cell may or may not be occupied.

10.10 Frequency Distribution of Energy Radiated from a Hot Body. Planck’s Law

The electromagnetic energy radiated from a hot body at temperature T in the small frequency interval
ν to ν + dν may be written Eνdν. If this quantity is measured experimentally over a wide range of ν a
curve T1 in Figure 10.8 will result. The general shape of the curve is independent of the temperature, but
as T is increased the maximum of the curve increases and shifts towards a higher frequency.

The early attempts to describe the shape of this curve were based on two results we have already used.
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Ev dv

v λ

T2

Rayleigh-
Jeans

Black body radiation curves
following Planck's Law (T2 > T1)

T2

T1

Figure 10.8 Planck’s black body radiation curve plotted for two different temperatures T2 > T1, together with
the curve of the classical Rayleigh–Jeans explanation leading to the ‘ultra-violet catastrophe’.

In the chapter on coupled oscillations we associated normal modes with ‘degrees of freedom’, the

number of ways in which a system could take up energy. In kinetic theory, assigning an energy
1
2

kT to
each degree of freedom of a monatomic gas at temperature T leads to the gas law pV = RT = NkT
where N is Avogadro’s number, k is Boltzmann’s constant and R is the gas constant.

If we assume that each frequency radiated from a hot body is associated with the normal mode of an
oscillator with two degrees of freedom and two transverse planes of polarization, the energy radiated per
frequency interval dν may be considered as the product of the number of normal modes or oscillators
in the interval dν and an energy contribution of kT from each oscillator for each plane of polarization.
This gives

Eνdν =
4πν2 dν 2kT

c3
=

8πν2kT dν

c3

a result known as the Rayleigh–Jeans Law.
This, however, gives the energy density proportional to ν2 which, as the solid curve in Figure 10.8

shows, becomes infinite at very high frequencies, a physically absurd result known as the ultraviolet
catastrophe.

The correct solution to the problem was a major advance in physics. Planck had introduced the
quantum theory, which predicted that the average energy value kT should be replaced by the factor
hν/(ehν/kT − 1), where h is Planck’s constant (the unit of action). The experimental curve is thus
accurately described by Planck’s Radiation Law

Eνdν =
8πν2

c3

hν

ehν/kT − 1
dν (see Appendix 6) (10.3)
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10.11 Debye Theory of Specific Heats

The success of the modern theory of the specific heats of solids owes much to the work of Debye, who
considered the thermal vibrations of atoms in a solid lattice in terms of a vast complex of standing waves
over a great range of frequencies. This picture corresponds in three dimensions to the problem of atoms
spaced along a one-dimensional line (Chapter 6). In the specific heat theory each atom was allowed two
transverse vibrations (perpendicular planes of polarization) and one longitudinal vibration.

The number of possible modes or oscillations per unit volume in the frequency interval ν to ν +dν is
then given by

dn = 4πν2 dν

(
2
c3

T

+
1
c3

L

)
(10.4)

where cT and cL are respectively the transverse and longitudinal wave velocities.
Each mode has an average energy (from Planck’s Law) of ε̄ = hν/(ehν/kT − 1) and the total energy

in the frequency range ν to ν + dν for a gram atom of the solid of volume VA is then

VAε̄dn = 4πVA

(
2

c3
T

+
1
c3

L

)
hν3

ehν/kT − 1
dν

The total energy per gram atom over all permitted frequencies is then

EA =

∫
VAε̄dn = 4πVA

(
2
c3

T

+
1
c3

L

)∫ νm

0

hν3

ehν/kT − 1
dν

where νm is the maximum frequency of the oscillations.
There are N atoms per gram atom of the solid (N is Avogadro’s number) and each atom has three

allowed oscillation modes, so an approximation to νm is found by writing the integral of equation (9.2)
for a gram atom as

∫
dn = 3N = 4πVA

(
2
c3

T

+
1
c3

L

)∫ νm

0
ν2dν =

4πVA

3

(
2
c3

T

+
1
c3

L

)
ν3

m

The values of cT and cL can be calculated from the elastic constants of the solid (see Chapter 7 on
longitudinal waves) and νm can then be found.

The values of EA thus becomes

EA =
9N
ν3

m

∫ νm

0

hν

ehν/kT − 1
ν2 dν

and the variation of EA with the temperature T is the molar specific heat of the substance at constant
volume. The specific heat of aluminium calculated by this method is compared with experimental results
in Figure 10.9.
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Figure 10.9 Debye theory of specific heat of solids. Experimental values versus theoretical curve for aluminium.

Problem 10.1. A square membrane with sides of length 1 metre each side held under a tension of
2 N·m−1 weighs 100 grams. What is the velocity of waves on the membrane?

Problem 10.2. Show that

z = Aei{ωt−(k1x+k2y)}

where k2 = ω2/c2 = k2
1 + k2

2 is a solution of the two-dimensional wave equation

∂2z
∂x2

+
∂2z
∂y2

=
1
c2

∂2z
∂t2

Problem 10.3. Show that if the displacement of the waves on the membrane of width b of Figure 9.3 is
given by the superposition

z = A1 e
i[ωt−(k1x+k2y)] + A2 e

i[ωt−(k1x−k2y)]

with the boundary conditions

z = 0 at y = 0 and y = b

then the real part of z is

z = +2A1 sin k2y sin(ωt − k1x)

where

k2 =
nπ
b
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Waves in More Than One Dimension 227

Problem 10.4. Consider now the extension of Problem 10.3 where the waves are reflected at the
rigid edges of the rectangular membrane of sides length a and b as shown in the diagram. The final
displacement is the result of the superposition

z = A1 e
i[ωt−(k1x+k2y)]

+ A2 e
i[ωt−(k1x−k2y)]

+ A3 e
i[ωt−(−k1x−k2y)]

+ A4 e
i[ωt−(−k1x+k2y)]

with the boundary conditions

z = 0 at x = 0 and x = a

and

z = 0 at y = 0 and y = b

y

k2

k2

k1

–k1

–k2

–k2

–k1

k1

b

x

a

Show that this leads to a displacement

z = −4 A1 sin k1x sin k2y cosωt

(the real part of z), where

k1 =
n1π

a
and k2 =

n2π

b
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228 Introduction to Vibrations and Waves

Problem 10.5. Referring to the figure at the start of the worked example in section 10.3.1, if λ0 =
2πc/ω, λc = 2π/kx and λg = 2π/ky are the wavelengths propagating in the x and y directions
respectively show that

1
λ2

c
+

1
λ2

g
=

1
λ2

0

We see that for n = 1, kx = π/a and λc = 2a, and that as ω decreases and λ0 increases, ky = k sin θ
becomes imaginary and the wave is damped. Thus, n = 2(kx = 2π/a) gives λc = a, the ‘criti-
cal wavelength’, i.e. the longest wavelength propagated by a wave guide of separation a. Such cut-off
wavelengths and frequencies are a feature of wave propagation in periodic structures, transmission lines
and wave guides.

Problem 10.6. An electromagnetic wave guide has a rectangular cross section of width a in the y direc-
tion and height b in the z direction. The wave propagation is in the x direction and there are standing
waves normal to it. If Ex has an amplitude A but is 0 at y = 0 and a and at z = 0 and b, what is the
complex expression for Ex?

Problem 10.7. In problem 10.6 what is the lowest possible of ω (cut-off frequency) for kx to be real?

Problem 10.8. The dispersion relation for problem 10.6 and 10.7 is given by k2 = ω2/c2 − k2
x . Show

that the product of the phase velocity ω/kx and the group velocity ∂ω/∂kx of the wave is c2 where c is
the velocity of light.

Problem 10.9. A wave guide consists of a pair of parallel conducting plates of width b and separation a.
A dielectric of permeability μ and permittivity ε fills its volume. If an electromagnetic wave of amplitude
E0 travels down it use either the Poynting vector or the energy per unit volume to show that the power
transmitted is 1

2 abE2
0

√
ε
μ .

Problem 10.10. An electron (mass 9.1 × 10−31 kg) is accelerated through 1 volt to an energy 1eV =
1.6 × 10−19 joules. Its energy E = p2/2 m. Show that its de Broglie wavelength λdB ≈ 1 nm. Planck’s
constant h = 6.63 × 10−34 J · s−1.

Problem 10.11. By expanding the term ehν/kT − 1 in the denominator of Planck’s Radiation Law by a
Binomial series for hν � kT , show that for long wavelengths Planck’s Law becomes the Rayleigh–Jeans
expression.

Problem 10.12. Planck’s Radiation Law expressed in terms of Eλ the energy per unit range of wave-
length has a maximum λm, given by ch/λm = 5kT . Show that if the sun’s temperature is about 6000 K,
then λm ≈ 4.7×10−7 m, the green region of the visible spectrum where the human eye is most sensitive
(evolution ?). c = 3 × 108 m · s−1, h is Planck’s constant and k is Boltzmann’s constant.

Problem 10.13. The tungsten filament of an electric light bulb has a temperature of ≈ 2000 K. Show
that in this case λm ≈ 14 × 10−7 m, well into the infrared. Such a lamp is therefore a good heat source
but an inefficient light source.
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Fourier Methods

11.1 Fourier Series

In this chapter we are going to look in more detail at the implications of the principles of superposition
which we met at the beginning of the book when we added the two separate solutions of the simple
harmonic motion equation. Our discussion of monochromatic waves has led to the idea of repetitive
behaviour in a simple form. Now we consider more complicated forms of repetition which arise from
superposition.

Any function which repeats itself regularly over a given interval of space or time is called a periodic
function. This may be expressed by writing it as f (x) = f (x ± α) where α is the interval or period.

The simplest examples of a periodic function are sines and cosines of fixed frequency and wavelength,
where α represents the period τ , the wavelength λ or the phase angle 2π rad, according to the form of x.
Most periodic functions, for example the square wave system of Figure 11.1, although quite simple to
visualize are more complicated to represent mathematically. Fortunately this can be done for almost all
periodic functions of interest in physics using the method of Fourier Series, which states that any periodic
function may be represented by the series

f (x) =
1
2

a0 + a1 cos x + a2 cos 2x . . . + an cos nx

+ b1 sin x + b2 sin 2x . . . + bn sin nx, (11.1)

that is, a constant 1
2 a0 plus sine and cosine terms of different amplitudes, having frequencies which

increase in discrete steps. Such a series must, of course, satisfy certain conditions, chiefly those of con-
vergence. These convergence criteria are met for a function with discontinuities which are not too severe
and with first and second differential coefficients which are well behaved. At such discontinuities, for
instance in the square wave where f (x) = ±h at x = 0,±2π, etc., the series represents the mean of the
values of the function just to the left and just to the right of the discontinuity.

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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230 Introduction to Vibrations and Waves

h

f(x) = (sin x + 4h 1 1 1
753

sin 3x + sin 5x + sin 7x . . .  )

0–π π

π

2π 4π x

Figure 11.1 Square wave of height h and its Fourier sine series representation (odd function).

We may write the series in several equivalent forms:

f (x) =
1
2

a0 +
∞∑

n=1

(an cos nx + bn sin nx)

=
1
2

a0 +
∞∑

n=1

cn cos(nx − θn)

where

c2
n = a2

n + b2
n

and

tan θn = bn/an

or

f (x) =
∞∑

n=−∞
dn e

inx

where

2dn = an − ibn(n ≥ 0)

and

2dn = a−n + ib−n(n < 0)

To find the values of the coefficients an and bn let us multiply both sides of equation (11.1) by cos nx
and integrate with respect to x over the period 0 to 2π (say).

Every term

2π∫
0

cosmx cos nx dx =

{
0 if m �= n
π if m = n
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Fourier Methods 231

whilst every term

2π∫
0

sinmx cos nx dx = 0 for all m and n.

Thus for m = n,

an

2π∫
0

cos2 nx dx = πan

so that

an =
1
π

2π∫
0

f (x) cos nx dx

Similarly, by multiplying both sides of equation (11.1) by sin nx and integrating from 0 to 2π we have,
since

2π∫
0

sinmx sin nx dx =

{
0 if m �= n
π if m = n

that

bn =
1
π

2π∫
0

f (x) sin nx dx

Immediately we see that the constant (n = 0), given by 1
2 a0 = 1/2π

∫ 2π
0 f (x)dx, is just the average of

the function over the interval 2π. It is, therefore, the steady or ‘d.c.’ level on which the alternating sine
and cosine components of the series are superimposed, and the constant can be varied by moving the
function with respect to the x axis. When a periodic function is symmetric about the x axis its average
value, that is, its steady or d.c. base level, 1

2 a0, is zero, as in the square wave system of Figure 11.1. If
we raise the square waves so that they stand as pulses of height 2h on the x axis, the value of 1

2 a0 is hπ
(average value over 2π). The values of an represent twice the average value of the product f (x) cos nx
over the interval 2π; bn can be interpreted in a similar way.

We see also that the series representation of the function is the sum of cosine terms which are even
functions [cos x = cos(−x)] and of sine terms which are odd functions [sin x = − sin(−x)]. Now every
function f (x) = 1

2 [f (x) + f (−x)] + 1
2 [f (x) − f (−x)], in which the first bracket is even and the second

bracket is odd. Thus, the cosine part of a Fourier series represents the even part of the function and the sine
terms represent the odd part of the function. Taking the argument one stage further, a function f (x) which
is an even function is represented by a Fourier series having only cosine terms; if f (x) is odd it will have
only sine terms in its Fourier representation. Whether a function is completely even or completely odd
can often be determined by the position of the y axis. Our square wave of Figure 11.1 is an odd function
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232 Introduction to Vibrations and Waves

[f (x) = −f (−x)]; it has no constant and is represented by f (x) = 4h/π(sin x + 1/3 sin 3x + 1/5 sin 5x,
etc., but if we now move the y axis a half period to the right as in Figure 11.2, then f (x) = f (−x), an
even function, and the square wave is represented by

f (x) =
4h
π

(
cos x − 1

3
cos 3x +

1
5
cos 5x − 1

7
cos 7x + · · ·

)

If we take the first three or four terms of the series representing the square wave of Figure 11.1 and
add them together, the result is Figure 11.3. The fundamental, or first harmonic, has the frequency of the
square wave and the higher frequencies build up the squareness of the wave. The highest frequencies are
responsible for the sharpness of the vertical sides of the waves; this type of square wave is commonly
used to test the frequency response of amplifiers. An amplifier with a square wave input effectively
‘Fourier analyses’ the input and responds to the individual frequency components. It then puts them
together again at its output, and if a perfect square wave emerges from the amplifier it proves that the
amplifier can handle the whole range of the frequency components equally well. Loss of sharpness at
the edges of the waves shows that the amplifier response is limited at the higher frequency range.

f(x) = 4h 1
3

1
5

1
7

(cos x – cos 3x + cos 5x – cos 7x . . . ) 𝜋

h

–𝜋–3𝜋 3𝜋𝜋
222

x

2

Figure 11.2 The wave of Figure 11.1 is now symmetric about the y axis and becomes a cosine series (even
function).

sin 5x

sin 3x

addition of first 
three terms

h

4h sin x
𝜋

Figure 11.3 Addition of the first three terms of the Fourier series for the square wave of Figure 11.1 shows that
the higher frequencies are responsible for sharpening the edges of the pulse.
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11.1.1 Worked Example of Fourier Series

Consider the square wave of height h in Figure 11.1. The value of the function is given by

f (x) = h for 0 < x < π

and

f (x) = −h for π < x < 2π

The coefficients of the series representation are given by

an =
1
π

⎡
⎣h

π∫
0

cos nx dx − h

2π∫
π

cos nx dx

⎤
⎦ = 0

because

π∫
0

cos nx dx =

2π∫
π

cos nx dx = 0

and

bn =
1
π

⎡
⎣h

π∫
0

sin nx dx − h

2π∫
π

sin nx dx

⎤
⎦

=
h

nπ
[[cos nx]0π + [cos nx]2ππ ]

=
h

nπ
[(1 − cos nπ) + (1 − cos nπ)]

giving bn = 0 for n even and bn = 4h/nπ for n odd. Thus, the Fourier series representation of the square
wave is given by

f (x) =
4h
π

(
sin x +

sin 3x
3

+
sin 5x

5
+

sin 7x
7

+ · · ·
)

(11.2)

11.1.2 Fourier Series for any Interval

Although we have discussed the Fourier representation in terms of a periodic function its application
is much more fundamental, for any section or interval of a well-behaved function may be chosen and
expressed in terms of a Fourier series. This series will accurately represent the function only within the
chosen interval. If applied outside that interval it will not follow the function but will periodically repeat
the value of the function within the chosen interval. If we represent this interval by a Fourier cosine
series the repetition will be that of an even function; if the representation is a Fourier sine series an odd
function repetition will follow.

Suppose now that we are interested in the behaviour of a function over only one-half of its full interval
and have no interest in its representation outside this restricted region. In Figure 11.4a the function f (x) is



�

�

“Pain-Driver” — 2014/12/30 — 13:16 — page 234 — #6
�

�

�

�

�

�

234 Introduction to Vibrations and Waves

(a)

(b)

(c)

f(x)

fe(x)

f0(x)
x

0–l
2

0

0

x

x
–l
2

–l
2

l
2

l
2

l
2

Figure 11.4 A Fourier series may represent a function over a selected half-interval. The general function in (a) is
represented in the half-interval 0 < x < l/2 by fe, an even function cosine series in (b), and by f0, an odd function
sine series in (c). These representations are valid only in the specified half-interval. Their behaviour outside that
half-interval is purely repetitive and departs from the original function.

shown over its full space interval −l/2 to +l/2, but f (x) can be represented completely in the interval 0 to
+l/2 by either a cosine function (which will repeat itself each half-interval as an even function) or it can
be represented completely by a sine function, in which case it will repeat itself each half-interval as an
odd function. Neither representation will match f (x) outside the region 0 to +l/2, but in the half-interval
0 to +l/2 we can write

f (x) = fe(x) = fo(x)

where the subscripts e and o are the even (cosine) or odd (sine) Fourier representations, respectively.
The arguments of sines and cosines must, of course, be phase angles, and so far the variable x has

been measured in radians. Now, however, the interval is specified as a distance and the variable becomes
2πx/l, so that each time x changes by l the phase angle changes by 2π.

Thus

fe(x) =
a0

2
+

∞∑
n=1

an cos
2πnx

l

where

an =
1

1
2 interval

l/2∫
−l/2

f (x) cos
2πnx

l
dx

=
2
l

⎡
⎢⎣

0∫
−l/2

fe(x) cos
2πnx

l
dx +

l/2∫
0

fe(x) cos
2πnx

l
dx

⎤
⎥⎦

=
4
l

l/2∫
0

f (x) cos
2πnx

l
dx
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because

f (x) = fe(x) from x = 0 to l/2

and

f (x) = f (−x) = fe(x) from x = 0 to − l/2

Similarly we can represent f (x) by the sine series

f (x) = fo(x) =
∞∑

n=1

bn sin
2πnx

l

in the range x = 0 to l/2 with

bn =
1

1
2 interval

l/2∫
−l/2

f (x) sin
2πnx

l
dx

=
2
l

⎡
⎢⎣

0∫
−l/2

fo(x) sin
2πnx

l
dx +

l/2∫
0

fo(x) sin
2πnx

l
dx

⎤
⎥⎦

In the second integral fo(x) = f (x) in the interval 0 to l/2 whilst

0∫
−l/2

fo(x) sin
2πnx

l
dx =

0∫
l/2

fo(−x) sin
2πnx

l
dx = −

0∫
l/2

fo(x) sin
2πnx

l
dx

=

l/2∫
0

fo(x) sin
2πnx

l
dx =

l/2∫
0

f (x) sin
2πnx

l
dx

Hence

bn =
4
l

l/2∫
0

f (x) sin
2πnx

l
dx

If we follow the behaviour of fe(x) and fo(x) outside the half-interval 0 to l/2 (Figure 11.4b, c) we see
that they no longer represent f (x).
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11.2 Application of Fourier Sine Series to a Triangular Function

Figure 11.5 shows a function which we are going to describe by a sine series in the half-interval 0 to π.
The function is

f (x) = x
(

0 < x <
π

2

)

and

f (x) = π − x
(π

2
< x < π

)

Writing f (x) =
∑

bn sin nx gives

bn =
2
π

π/2∫
0

x sin nx dx +
2
π

π∫
π/2

(π − x) sin nx dx

=
4

n2π
sin

nπ
2

(using

∫
x sin nxdx =

1
n2

sin nx − x
n
cos nx), n �= 0

When n is even sin nπ/2 = 0, so that only terms with odd values of n are present and

f (x) =
4
π

(
sin x
12

− sin 3x
32

+
sin 5x

52
− sin 7x

72
+ · · ·

)

Note that at x = π/2, f (x) = π/2, giving

π2

8
=

1
12

+
1
32

+
1
52

+ =

∞∑
n=0

1
(2n + 1)2

We shall use this result a little later.

f(x)

l

–𝜋 –𝜋
2

0 𝜋 𝜋
2

x

f(x) = x (0 < x <

f(x) = 𝜋 – x (     < x < 𝜋)

2 )𝜋

2
𝜋

Figure 11.5 Function representing a plucked string and defined over a limited interval. When the string vibrates
all the permitted harmonics contribute to the initial configuration.
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Note that the solid line in the interval 0 to −π in Figure 11.5 is the Fourier sine representation for f (x)
repeated outside the interval 0 to π whilst the dotted line would result if we had represented f (x) in the
interval 0 to π by an even cosine series.

11.3 Application to the Energy in the Normal Modes of a Vibrating String

If we take a string of length l with fixed ends and pluck its centre a distance d we have the configuration of
the half interval 0 to π of Figure 11.5 which we represented as a Fourier sine series. Releasing the string
will set up its normal mode or standing wave vibrations, each of which we have shown in section 5.11
to have the displacement

yn = (An cosωnt + Bn sinωnt) sin
ωnx

c
(5.4)

where ωn = nπc/l is the normal mode frequency.
The total displacement, which represents the shape of the plucked string at t = 0, is given by summing

the normal modes

y =
∑

yn =
∑

(An cosωnt + Bn sinωnt) sin
ωnx

c

Note that this sum resembles a Fourier series where the fixed ends of the string, y = 0 at x = 0 and x = l
allow only the sine terms in x in the series expansion. If the string remains plucked at rest only the terms
in x with appropriate coefficients are required to describe it, but its vibrational motion after release has
a time dependence which is expressed in each harmonic coefficient as

An cosωnt + Bn sinωnt

The significance of these coefficients emerges when we consider the initial or boundary conditions
in time.

Let us write the total displacement of the string at time t = 0 as

y0(x) =
∑

yn(x) =
∑

(An cosωnt + Bn sinωnt) sin
ωnx

c

=
∑

An sin
ωnx

c
at t = 0

Similarly we write the velocity of the string at time t = 0 as

υ0(x) =
∂

∂t
y0(x) =

∑
ẏn(x)

=
∑

(−ωnAn sinωnt + ωnBn cosωnt) sin
ωnx

c

=
∑

ωnBn sin
ωnx

c
at t = 0

Both y0(x) and υ0(x) are thus expressed as Fourier sine series, but if the string is at rest at t = 0, then
υ0(x) = 0 and all the Bn coefficients are zero, leaving only the An’s. If the displacement of the string
y0(x) = 0 at time t = 0 whilst the string is moving, then all the An’s are zero and the Fourier coefficients
are the ωnBn’s.
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238 Introduction to Vibrations and Waves

We can solve for both An and ωnBn in the usual way for if

y0(x) =
∑

An sin
ωnx

c

and

υ0(x) =
∑

ωnBn sin
ωnx

c

for a string of length l then

An =
2
l

l∫
0

y0(x) sin
ωnx

c
dx

and

ωnBn =
2
l

l∫
0

v0(x) sin
ωnx

c
dx

If the plucked string of mass m (linear density ρ) is released from rest at t = 0 (v0(x) = 0) the energy
in each of its normal modes of vibration, given at the end of section 5.13 as

En =
1
4

mω2
n(A

2
n + B2

n)

is simply

En =
1
4

mω2
nA2

n

because all Bn’s are zero.
The total vibrational energy of the released string will be the sum

∑
En over all the modes present in

the vibration.
Let us now solve the problem of the plucked string released from rest. The configuration of Figure 11.5

(string length l, centre plucked a distance d) is given by

y0(x) =
2dx

l
0 ≤ x ≤ l

2

=
2d(l − x)

l
l
2
≤ x ≤ l

so

An =
2
l

⎡
⎢⎣

l/2∫
0

2dx
l

sin
ωnx

c
dx +

l∫
l/2

2d(l − x)
l

sin
ωnx

c
dx

⎤
⎥⎦

=
8d

n2π2
sin

nπ
2

(
for ωn =

nπc
l

)
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We see at once that An = 0 for n even (when the sine term is zero) so that all even harmonic modes are
missing. The physical explanation for this is that the even harmonics would require a node at the centre
of the string which is always moving after release.

The displacement of our plucked string is therefore given by the addition of all the permitted (odd)
modes as

y0(x) =
∑
n odd

yn(x) =
∑
n odd

An sin
ωnx

c

where

An =
8d

n2π2
sin

nπ
2

The energy of the nth mode of oscillation is

En =
1
4

mω2
nA2

n =
64d2mω2

n

4(n2π2)2

and the total vibrational energy of the string is given by

E =
∑

n odd

En =
16d2m
π4

∑
n odd

ω2
n

n4
=

16d2c2m
π2l2

∑
n odd

1
n2

(11.3)

for

ωn =
nπc

l

But we saw in the last section that

∑
n odd

1
n2

=
π2

8

so

E =
∑

En =
2mc2d2

l2
=

2Td2

l
(11.4)

where T = ρc2 is the constant tension in the string.
This vibrational energy, in the absence of dissipation, must be equal to the potential energy of the

plucked string before release and the reader should prove this by calculating the work done in plucking
the centre of the string a small distance d, where d � l.

To summarize, our plucked string can be represented as a sine series of Fourier components, each giv-
ing an allowed normal mode of vibration when it is released. The concept of normal modes allows the
energies of each mode to be added to give the total energy of vibration which must equal the poten-
tial energy of the plucked string before release. The energy of the nth mode is proportional to n−2

and therefore decreases with increasing frequency. Even modes are forbidden by the initial boundary
conditions.
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240 Introduction to Vibrations and Waves

The boundary conditions determine which modes are allowed. If the string were struck by a hammer
those harmonics having a node at the point of impact would be absent, as in the case of the plucked
string. Pianos are commonly designed with the hammer striking a point one seventh of the way along
the string, thus eliminating the seventh harmonic which combines to produce discordant effects.

11.4 Fourier Series Analysis of a Rectangular Velocity Pulse on a String

Let us now consider a problem similar to that of the last section except that now the displacement y0(x)
of the string is zero at time t = 0 whilst the velocity υ0(x) is non-zero. A string of length l, fixed at both
ends, is struck by a mallet of width a about its centre point. At the moment of impact the displacement

y0(x) = 0

but the velocity

υ0(x) =
∂y0(x)
∂t

= 0 for

∣∣∣∣x − l
2

∣∣∣∣ ≥ a
2

= υ for

∣∣∣∣x − l
2

∣∣∣∣ < a
2

This situation is shown in Figure 11.6.
The Fourier series is given by

υ0(x) =
∑

n

ẏn =
∑

n

ωnBn sin
ωnx

c

where

ωnBn =
2
l

l/2+a/2∫
+l/2−a/2

v sin
ωnx

c
dx

=
4v
nπ

sin
nπ
2

sin
nπa
2l

a

V

x

l

Figure 11.6 Velocity distribution at time t = 0 of a string length l, fixed at both ends and struck about its centre
point by a mallet of width a. Displacement y0(x) = 0; velocity υ0(x) = υ for |x− l/2| < a/2 and zero outside this
region.
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Again we see that ωnBn = 0 for n even (sin nπ/2 = 0) because the centre point of the string is never
stationary, as is required in an even harmonic.

Thus

υ0(x) =
∑
n odd

4v
nπ

sin
nπa
2l

The energy per mode of oscillation

En =
1
4

mω2
n(A

2
n + B2

n)

=
1
4

mω2
nB2

n (All An’s = 0)

=
1
4

m
16v2

n2π2
sin2 nπa

2l

=
4mv2

n2π2
sin2 nπa

2l

Now

n =
ωn

ω1
=

ωnl
πc

for the fundamental frequency

ω1 =
πc
l

So

En =
4mv2c2

l2ω2
n

sin2 ωna
2c

Again we see, since ωn ∝ n that the energy of the nth mode ∝ n−2 and decreases with increasing
harmonic frequency. We may show this by rewriting

En(ω) =
mv2a2

l2
sin2(ωna/2c)
(ωna/2c)2

=
mv2a2

l2
sin2 α

α2

where

α = ωna/2c

and plotting this expression as an energy-frequency spectrum in Figure 11.7.
The familiar curve of sin2 α/α2 again appears as the envelope of the energy values for each ωn.
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𝜔n

𝜔n
𝜔1 𝜔3 𝜔5 𝜔7

(b)

(a)

En(𝜔)

En(𝜔)

E1

E1

9

𝜔 = a
2𝜋 c

E1

25 E1

49

Figure 11.7 (a) Distribution of the energy in the harmonics ωn of the string of Figure 11.6. The spectrum En(ω) ∝
sin2α/α2 where α = ωna/2c. Most of the energy in the string is contained in the frequency range Δω ≈ 2πc/a,
and for a = Δx (the spatial width of the pulse), Δx/c = Δt and ΔωΔt ≈ 2π (Bandwidth Theorem). Note that
the values of En(ω) for ω3, ω5, ω7, etc. are magnified for clarity. (b) The true shape of the pulse.

If the energy at ω1 is E1 then E3 = E1/9 and E5 = E1/25 so the major portion of the energy in the
velocity pulse is to be found in the low frequencies. The first zero of the envelope sin2 α/α2 occurs when

α =
ωa
2c

= π

so the width of the central frequency pulse containing most of the energy is given by

ω ≈ 2πc
a

This range of energy-bearing harmonics is known as the ‘spectral width’ of the pulse written

Δω ≈ 2πc
a

The ‘spatial width’ a of the pulse may be written as Δx so we have

ΔxΔω ≈ 2πc

Reducing the width Δx of the mallet will increase the range of frequencies Δω required to take up the
energy in the rectangular velocity pulse. Now c is the velocity of waves on the string so a wave travels a
distance Δx along the string in a time

Δt = Δx/c
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which defines the duration of the pulse giving

ΔωΔt ≈ 2π

or

ΔνΔt ≈ 1

the Bandwidth Theorem we first met in section 6.2.
Note that the harmonics have frequencies

ωn =
nπc

l

so πc/l is the harmonic interval. When the length l of the string becomes very long and l → ∞ so that the
pulse is isolated and non-periodic, the harmonic interval becomes so small that it becomes differential
and the Fourier series summation becomes the Fourier Integral.

11.5 Three-Phase Full Wave Rectification

One of the most common ways of producing direct current with low ripple from an alternating current
source is three-phase full wave rectification. Figure 11.8a shows the waveform produced by the distribut-
ing circuit of Figure 11.8b. Each of the three leads I+, I0, I− produces the same a.c. signal of amplitude
I0 with respect to a neutral point with I+ = I0 cos(ωt + π/3), I0 = I0 cosωt and I− = I0 cos(ωt − π/3).
The resulting wave is almost fully rectified. The sum of the three components

I = I0 cos(ωt + π/3) + I0 cosωt + I0 cos(ωt − π/3) = 2I0 cosωt

because I+ = I− = 1
2 I0 cosωt

The value is repeated 6 times per cosine cycle with the Fourier series coefficients equal to

an = 2I0

(
12
π

) π
6∫

0

cosωt cos nωt =
I0

π

12
n2 − 1

(a)

t

I R

I+

I0

I0I+ I– I0I+ I– I0I+ I–

I–

(b)

Figure 11.8 (a) Waveform of rectified full wave, three-phase a.c. signal. (b) Circuit for producing waveform in (a).
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with alternate +ve and −ve signs of n giving

I =
12I0

π

[
1
2
+

1
35

cos 6ωt − 1
143

cos 12ωt + · · ·
]

with 6th, 12th and 18th harmonics of the fundamental. Note that the second term of the series is only
≈ 6% of the constant d/c term and the following terms are even smaller. The ripple on the d.c. term is
very low.

11.6 The Spectrum of a Fourier Series

The Fourier series can always be represented as a frequency spectrum. In Figure 11.9a a the relative
amplitudes of the frequency components of the square wave of Figure 11.1 are plotted, each sine term
giving a single spectral line. In a similar manner, the distribution of energy with frequency may be
displayed for the plucked string of the earlier section. The frequency of the rth mode of vibration is
given by ωr = rπc/l, and the energy in each mode varies inversely with r2, where r is odd. The spectrum
of energy distribution is therefore given by Figure 11.9b.

Suppose now that the length of this string is halved but that the total energy remains constant. The
frequency of the fundamental is now increased to ω′

r = 2rπc/l and the frequency interval between
consecutive spectral lines is doubled (Figure 11.9c). Again, the smaller the region in which a given
amount of energy is concentrated the wider the frequency spectrum required to represent it.

Frequently, a Fourier series is expressed in its complex or exponential form

f (t) =
∞∑

n=−∞
dne

inωt

where 2 dn = an − ibn(n ≥ 0) and 2 dn = a−n + ib−n(n < 0).
Because

cos nωt =
1
2
(einωt + e−inωt)

and

sin nωt =
1
2i
(einωt − e−inωt)

a frequency spectrum in the complex plane produces two spectral lines for each frequency component nω,
one at +nω and the other at −nω. Figure 11.9d shows the cosine representation, which lies wholly in the
real plane, and Figure 11.9e shows the sine representation, which is wholly imaginary. The amplitudes
of the lines in the positive and negative frequency ranges are, of course, complex conjugates, and the
modulus of their product gives the square of the true amplitude. The concept of a negative frequency
is seen to arise because the e−inωt term increases its phase in the opposite sense to that of the positive
term einωt. The negative amplitude of the negative frequency in the sine representation indicates that it
is in anti-phase with respect to that of the positive term.
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l

l
2

0

0

Frequency 
spectrum

f(x) = 4h 1
3

1
5

1
7

(sin x + sin 3x + sin 5x + sin 7x) 𝜋

2𝜋 𝜋4h
𝜋0h

(a)

(b)

(c)

(d)

–nω
–nω

+nω +nω
frequency

1
2

einωt + e–inωtcos nωt = 

frequency

Re(dn) Re(dn)

Im(dn) Im(dn)

(e)

x 3x 5x 7x

E1

E1

E1́  = 2E1

9

ωr = r

ω1 =

ω1

ω1́ 3ω1́ 5ω1́ 7ω1́

3ω1 5ω1 7ω1

E1
25

E1
49

E1́
9

E1́
25

E1́
49

𝜋c
l

𝜋c
l

ωŕ  = 2r

2𝜋c
l

ω1́  = 

𝜋c
l

1
2i

einωt – e–inωtsin nωt = 

Figure 11.9 (a) Fourier sine series of a square wave represented as a frequency spectrum; (b) energy spectrum
of a plucked string of length l; and (c) the energy spectrum of a plucked string of length l/2 with the same total
energy as (b), demonstrating the Bandwidth Theorem that the greater the concentration of the energy in space or
time the wider its frequency spectrum. Complex exponential frequency spectrum of (d) cosωt and (e) sinωt.
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Problem 11.1. After inspection of the two waveforms in the diagram what can you say about the values
of the constant, absence or presence of sine terms, cosine terms, odd or even harmonics, and range of
harmonics required in their Fourier series representation? (Do not use any mathematics.)

2 T

–2 T –  T T  2 T

T

t

t

t

t

Problem 11.2. Show that if a periodic waveform is such that each half-cycle is identical except in sign
with the previous one, its Fourier spectrum contains no even order frequency components. Examine the
result physically.

Problem 11.3. Show that advancing the phase of the series in Figure 11.1 produces the series in
Figure 11.2.

Problem 11.4. A half-wave rectifier removes the negative half-cycles of a pure sinusoidal wave y =
h sin x. Show that the Fourier series is given by

y =
h
π

(
1 +

π

1 · 2
sin x − 2

1 · 3
cos 2x − 2

3 · 5
cos 4x − 2

5 · 7
cos 6x . . .

)

Problem 11.5. A full-wave rectifier merely inverts the negative half-cycle in Problem 11.4. Show that
this doubles the output and removes the undesirable modulating ripple of the first harmonic.

Problem 11.6. Can you suggest a method of obtaining the full wave rectifier series by using only the
half wave rectifier series (Problem 11.4 and 11.5)? Hint – use Problem 11.3 as a model. The calculation
is optional.

Problem 11.7.

A.C. C

C

R
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The accompanying circuit denotes the potential of an applied full wave rectifier. Each capacitor is
charged once a cycle to a potential V/2 where V is the potential appearing across R. The charge flows
from the capacitor through R for a time t approximately equal to the period of the a/c cycle. Use an
expression for the current to show that the percentage voltage fluctuation across the loadΔV/V ≈ 2t/RC
where t is the a.c. period and RC is the relaxation time of the circuit.

Problem 11.8. Use equations 11.3 and 11.4 with T = ρc2 to show that the lowest three excited modes
contain ≈ 93.5% of the total energy.

Problem 11.9. Show that f (x) = x2 may be represented in the interval ±π by

f (x) =
π2

3
+

∑
(−1)n 4

n2
cos nx

Problem 11.10. Use the square wave sine series of unit height f (x) = 4/π(sin x + 1
3 sin 3x + 1

5 sin 5x)
to show that

1 − 1
3
+

1
5
− 1

7
= π/4

Problem 11.11. An infinite train of pulses of unit height, with pulse duration 2τ and a period between
pulses of T , is expressed as

f (t) = 0 for − 1
2

T < t < −τ

= 1 for − τ < t < τ

= 0 for τ < t <
1
2

T

and

f (t + T) = f (t)

Show that this is an even function with the cosine coefficients given by

an =
2

nπ
sin

2π
T

nτ

Problem 11.12. Show, in Problem 11.11, that as τ becomes very small the values of an → 4τ/T and are
independent of n, so that the spectrum consists of an infinite set of lines of constant height and spacing.
The representation now has the same form in both time and frequency; such a function is called ‘self
reciprocal’. What is the physical significance of the fact that as τ → 0, an → 0?
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248 Introduction to Vibrations and Waves

Problem 11.13. The pulses of Problems 11.11 and 11.12 now have amplitude 1/2τ with unit area under
each pulse. Show that as τ → 0 the infinite series of pulses is given by

f (t) =
1
T
+

2
T

∞∑
n=1

cos 2πnt/T

Under these conditions the amplitude of the original pulses becomes infinite, the energy per pulse
remains finite and for an infinity of pulses in the train the total energy in the waveform is also infinite.
The amplitude of the individual components in the frequency representation is finite, representing finite
energy, but again, an infinity of components gives an infinite energy.
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Waves in Optics (1) Interference

12.1 Light. Waves or Rays?

Light exhibits a dual nature. In practice, its passage through optical instruments such as telescopes and
microscopes is most easily shown by geometrical ray diagrams but the fine detail of the images formed by
these instruments is governed by diffraction which, together with interference, requires light to propagate
as waves. This chapter explains the basis of wavefront propagation and we shall consider the effects of
interference.

The electromagnetic wave nature of light was convincingly settled by Clerk–Maxwell in 1864 but as
early as 1690 Huygens was trying to reconcile waves and rays. He proposed that light be represented as a
wavefront, each point on this front acting as a source of secondary wavelets whose envelope became the
new position of the wavefront, shown in Figure 12.1(a). Light propagation was seen as the progressive
development of such a process. In this way, reflection and refraction at a plane boundary separating two
optical media could be explained as shown in Figure 12.1(b) and (c).

Huygens’ theory was explicit only on those contributions to the new wavefront directly ahead of each
point source of secondary waves. No statement was made about propagation in the backward direction
nor about contributions in the oblique forward direction. Each of these difficulties is resolved in the more
rigorous development of the theory by Kirchhoff which uses the fact that light waves are oscillatory.

The way in which rays may represent the propagation of wavefronts is shown in Figure 12.2 where
spherically diverging, plane and spherically converging wavefronts are moving from left to right. All
parts of the wavefront (a surface of constant phase) take the same time to travel from the source and all
points on the wavefront are the same optical distance from the source. This optical distance must take
account of the changes of refractive index met by the wavefront as it propagates. If the physical path
length is measured as x in a medium of refractive index n then the optical path length in the medium is
the product nx. In travelling from one point to another light chooses a unique optical path which may
always be defined in terms of Fermat’s Principle.

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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Incident
wavefront

Incident
wavefront

Reflected
wavefront

Reflected
wavefront

R4

w1

w

wʹ

w2

w3 n1

n2 > n1

(b)

(a)

(c)

R3

R2

R1

Figure 12.1 (a) Incident plane wavefront W propagates via Huygens wavelets to W′. (b) At the plane boundary
between the media (refractive index n2 > n1) the incident wavefront W1 has a reflected section R1. Increasing
sections R2 and R3 are reflected until the whole wavefront is reflected as R4. (c) An increasing section of the
incident wavefront is refracted. Incident wavefronts are shown dashed, and reflected and refracted wavefronts as
a continuous line.

Diverging
wavefront

Plane wavefront 

Converging
wavefront 

Ray

Figure 12.2 Ray representation of spherically diverging, plane and spherically converging wavefronts.

12.2 Fermat’s Principle

Fermat’s Principle states that the optical path length has a stationary value; its first order variation or
first derivative in a Taylor series expansion is zero. This means that when an optical path lies wholly
within a medium of constant refractive index the path is a straight line, the shortest distance between its
end points, and the light travels between these points in the minimum possible time. When the medium
has a varying refractive index or the path crosses the boundary between media of different refractive
indices the direction of the path always adjusts itself so that the time taken between its end points is a
minimum. Fermat’s Principle is therefore sometimes known as the Principle of Least Time. Figure 12.3
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Hot air
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reflecting
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Eye

Earth

Rare atmosphere

Cool air

Straight path
to sun

Ray from sun
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(b)

D
en

se
 a

tm
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Figure 12.3 Light takes the shortest optical path in a medium of varying refractive index. (a) A light ray from the
sun bends towards the earth in order to shorten its path in the denser atmosphere. The sun remains visible after
it has passed below the horizon. (b) A light ray avoids the denser atmosphere and the road immediately below
warm air produces an apparent reflection.

shows examples of light paths in a medium of varying refractive index. As examples of light meeting a
boundary between two media we use Fermat’s Principle to derive the laws of reflection and refraction.

12.3 The Laws of Reflection

In Figure 12.4a Fermat’s Principle requires that the optical path length OSI should be a minimum where
O is the object, S lies on the plane reflecting surface and I is the point on the reflected ray at which the
image of O is viewed. The plane OSI must be perpendicular to the reflecting surface for, if reflection
takes place at any other point S′ on the reflecting surface where OSS′ and ISS′ are right angles then
evidently OS′ >OS and IS′ > IS, giving OS′I > OSI.

The laws of reflection also require, in Figure 12.4a, that the angle of incidence i equals the angle of
reflection r. If the coordinates of O, S and I are those shown and the velocity of light propagation is c
then the time taken to traverse OS is

t = (x2 + y2)1/2/c

and the time taken to traverse SI is

t′ = [(X − x)2 + y2]1/2/c
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S(x, 0) S(x, 0)

I(X, Y)

I(X, y)0(0, y) 0(0, y)

n < nʹ

Sʹx x

y
j jr

rʹ
nʹ

y

(a) (b)

Figure 12.4 The time for light to follow the path OSI is a minimum (a) in reflection, when OSI forms a plane
perpendicular to the reflecting surface and î = r̂; and (b) in refraction, when n sin i = n′ sin r′ (Snell’s Law).

so that the total time taken to travel the path OSI is

T = t + t′

The position of S is now varied along the x axis and we seek, via Fermat’s Principle of Least Time,
that value of x which minimizes T, so that

dT
dx

=
x

c(x2 + y2)1/2
− X − x

c[(X − x)2 + y2]1/2
= 0

But

x

(x2 + y2)1/2
= sin i

and

X − x

[(X − x)2 + y2]1/2
= sin r

Hence

sin i = sin r

and

î = r̂
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12.4 The Law of Refraction

Exactly similar arguments lead to Snell’s Law.
Here we express it as

n sin i = n′ sin r′

where i is the angle of incidence in the medium of refractive index n and r′ is the angle of refraction
in the medium of refractive index n′(n′ > n). In Figure 12.4b a plane boundary separates the media
and light from O(0, y) is refracted at S(x, 0) and viewed at I (X, Y) on the refracted ray. If v and v′ are
respectively the velocities of light propagation in the media n and n′ then OS is traversed in the time

t = (x2 + y2)1/2/v

and SI is traversed in the time

t′ = [(X − x)2 + Y2]1/2/v′

The total time to travel from O to I is T = t + t′ and we vary the position of S along the x axis which
lies on the plane boundary between n and n′, seeking that value of x which minimizes T . So

dT
dx

=
1
v

x

(x2 + y2)1/2
− 1

v′
(X − x)

[(X − x)2 + Y2]1/2
= 0

where

x

(x2 + y2)1/2
= sin i

and

(X − x)

[(X − x)2 + Y2]1/2
= sin r′

But

1
υ
=

n
c

and

1
υ′ =

n′

c

Hence

n sin i = n′ sin r′
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12.5 Interference and Diffraction

All waves display the phenomena of interference and diffraction which arise from the superposition of
more than one wave. At each point of observation within the interference or diffraction pattern the phase
difference between any two component waves of the same frequency will depend on the different paths
they have followed and the resulting amplitude may be greater or less than that of any single component.
Although we speak of separate waves the waves contributing to the interference and diffraction pattern
must ultimately derive from the same single source. This avoids random phase effects from separate
sources and guarantees coherence. However, even a single source has a finite size and spatial coherence
of the light from different parts of the source imposes certain restrictions if interference effects are to be
observed. This is discussed in section 12.14.1, subsection on spatial coherence. In this chapter we shall
consider the effects of interference. Chapter 13 will discuss diffraction.

12.6 Interference

Interference effects may be classified in two ways:

1. Division of amplitude
2. Division of wavefront

1. Division of amplitude. Here a beam of light or ray is reflected and transmitted at a boundary
between media of different refractive indices. The incident, reflected and transmitted components
form separate waves and follow different optical paths. They interfere when they are recombined.

2. Division of wavefront. Here the wavefront from a single source passes simultaneously through two
or more apertures each of which contributes a wave at the point of superposition. Diffraction also
occurs at each aperture.

The difference between interference and diffraction is merely one of scale: in optical diffraction from a
narrow slit (or source) the aperture is of the order of the wavelength of the diffracted light. According to
Huygens’ Principle every point on the wavefront in the plane of the slit may be considered as a source
of secondary wavelets and the further development of the diffracted wave system may be obtained by
superposing these wavelets.

In the interference pattern arising from two or more such narrow slits each slit may be seen as the
source of a single wave so the number of superposed components in the final interference pattern equals
the number of slits (or sources). This suggests that the complete pattern for more than one slit will display
both interference and diffraction effects and we shall see that this is indeed the case.

12.7 Division of Amplitude

First of all we consider interference effects produced by division of amplitude. In Figure 12.5 a ray of
monochromatic light of wavelength λ in air is incident at an angle i on a plane parallel slab of material
thickness t and refractive index n > 1. It suffers partial reflection and transmission at the upper surface,
some of the transmitted light is reflected at the lower surface and emerges parallel to the first reflection
with a phase difference determined by the extra optical path it has travelled in the material. These parallel
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C

D

B

A

S

n > 1 t constant
θ

θ

I

Figure 12.5 Fringes of constant inclination. Interference fringes formed at infinity by division of amplitude when
the material thickness t is constant. The mth order bright fringe is a circle centred at S and occurs for the constant
θ value in 2nt cos θ = (m + 1

2 )λ.

beams meet and interfere at infinity but they may be brought to focus by a lens. Their optical path
difference is seen to be

n(AB + BD)−AC = 2nAB−AC

= 2nt/ cos θ − 2t tan θ sin i

=
2nt
cos θ

(1 − sin2 θ) = 2nt cos θ

(because sin i = n sin θ).
This path difference introduces a phase difference

δ =
2π
λ

2nt cos θ

but an additional phase change of π rad occurs at the upper surface.
The phase difference δ between the two interfering beams is achieved by writing the beam ampli-

tudes as

y1 = a(sinωt + δ/2) and y2 = a sin(ωt − δ/2)

with a resultant amplitude

R = a[sin(ωt + δ/2) + sin(ωt − δ/2)

= 2a sinωt cos δ/2

and an intensity

I = R2 = 4a2 sin2 ωt cos2 δ/2

Figure 12.6 shows the familiar cos2 δ/2 intensity fringe pattern for the spatial part of I.



�

�

“Pain-Driver” — 2014/12/30 — 13:21 — page 256 — #8
�

�

�

�

�

�

256 Introduction to Vibrations and Waves

4a2

–4π –4π 0 2π
210–1–2

4πδ
m

Figure 12.6 Interference fringes of cos2 intensity produced by the division of amplitude in Figure 12.5. The phase
difference δ = 2πnt cos θ/λ and m is the order of interference.

Thus, if 2nt cos θ = mλ (m an integer) the two beams are anti-phase and cancel to give zero intensity,
a minimum of interference. If 2nt cos θ = (m+ 1

2 )λ the amplitudes will reinforce to give an interference
maximum.

Since t is constant the locus of each interference fringe is determined by a constant value of θ which
depends on a constant angle i. This gives a circular fringe centred on S. An extended source produces a
range of constant θ values at one viewing position so the complete pattern is obviously a set of concentric
circular fringes centred on S and formed at infinity. They are fringes of equal inclination and are called
Haidinger fringes. They are observed to high orders of interference, that is values of m, so that t may be
relatively large.

When the thickness t is not constant and the faces of the slab form a wedge, Figure 12.7a, the inter-
fering rays are not parallel but meet at points (real or virtual) near the wedge. The resulting interference
fringes are localized near the wedge and are almost parallel to the thin end of the wedge. When obser-
vations are made at or near the normal to the wedge cos θ ∼ 1 and changes slowly in this region so that
2nt cos θ ≈ 2nt. The condition for bright fringes then becomes

2nt = (m + 1
2)λ

and each fringe locates a particular value of the thickness t of the wedge and this defines the patterns as
fringes of equal thickness. As the value of m increases to m + 1 the thickness of the wedge increases by
λ/2n so the fringes allow measurements to be made to within a fraction of a wavelength and are of great
practical importance.

The spectral colours of a thin film of oil floating on water are fringes of constant thickness. Each
frequency component of white light produces an interference fringe at that film thickness appropriate to
its own particular wavelength.

In the laboratory the most familiar fringes of constant thickness are Newton’s Rings.

Worked Example

A thin air wedge is formed by separating one end of a pair of flat glass plates one of which rests on the
other. The plates are 50 cm long and the end separation is 0.5 mm. Light of λ = 600 nm falls almost
vertically on the glass. If x = 0 when the wedge thickness is t = 0, show that the width of a fringe is
Δx = λ/2α where α is the wedge angle in radians. Calculate the number of fringes per cm.
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t varying

t varying

n > 1

n > 1

(b)

(a)

Figure 12.7 Fringes of constant thickness. When the thickness t of the material is not constant the fringes are
localized where the interfering beams meet (a) in a real position and (b) in a virtual position. These fringes are
almost parallel to the line where t = 0 and each fringe defines a locus of constant t.

Solution

The text gives 2t = (m + 1
2)λ/2α where t = xα so Δx = xm+1 − xm = λ/2α

α = .5 × 10−3/50 × 10−2 i.e. α = 10−3 radians

Δx = 600 × 10−9/2 × 10−3 = 3 × 10−4 m

∴ No. of fringes per cm = 10−2/3 × 10−4 = 33.3.

12.8 Newton’s Rings

Here the wedge of varying thickness is the air gap between two spherical surfaces of different curva-
ture. A constant value of t yields a circular fringe and the pattern is one of concentric fringes alternately
dark and bright. The simplest example, Figure 12.8, is a plano-convex lens resting on a plane reflecting
surface where the system is illuminated from above using a partially reflecting glass plate tilted at 45◦.
Each downward ray is partially reflected at each surface of the lens and at the plane surface. Interference
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takes place between the light beams reflected at each surface of the air gap. At the lower (air to glass)
surface of the gap there is a π rad phase change upon reflection and the centre of the interference fringe
pattern, at the point of contact, is dark. Moving out from the centre, successive rings are light and dark
as the air gap thickness increases in units of λ/2. If R is the radius of curvature of the spherical face of
the lens, the thickness t of the air gap at a radius r from the centre is given approximately by t ≈ r2/2R.
In the mth order of interference a bright ring requires

2t = (m +
1
2
)λ = r2/R

and because t ∝ r2 the fringes become more crowded with increasing r. Rings may be observed with
very simple equipment and good quality apparatus can produce fringes for m > 100.

Worked Example

We have just seen that the mth bright Newton’s ring appears at 2t = (m + 1
2 )λ = r2/R where R is the

radius of curvature of the plano-convex lens and t is the thickness of the film under the lens at radius r

L

Focal plane
of L

Semi-silvered
reflector

Interfering
beams

Incident
light

Optical flat

Figure 12.8 Newton’s rings of interference formed by an air film of varying thickness between the lens and the
optical flat. The fringes are circular, each fringe defining a constant value of the air film thickness.
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(Figure 12.8). If θ is the angle between the light shining r = 0 and r = r where the thickness of the film
is t then we may write t = R(1 − cos θ) ≈ R(θ2/2! + θ4/4!) ≈ r2/2R where r2/2R is a parabola which
is the first approximation to a circle for small r. This approximation is good enough if the difference
between the parabola and the circle is � λ. If R = 1 m and λ = 500 nm = 5 × 10−7 m, then
θ � 5.8 × 10−2 radians, i.e. ≈ 3◦. If r = 1 cm, t = 1/200 cm and 2t ≈ mλ. Writing λ = 5 × 10−5 cm
we have m = 10−2/5 × 10−5 ≈ 200 rings. ∴ the first order t = r2/2R is justified.

12.9 Michelson’s Spectral Interferometer

This instrument can produce both types of interference fringes, that is, circular fringes of equal inclination
at infinity and localized fringes of equal thickness. At the end of the nineteenth century it was one of the
most important instruments for measuring the structure of spectral lines.

As shown in Figure 12.9 it consists of two identical plane parallel glass plates G1 and G2 and two
highly reflecting plane mirrors M1 and M2. G1 has a partially silvered back face, G2 does not. In the

Source
S

G1 G2

M2

M1

Eye or detector

Allowed
movement
of M1

Figure 12.9 Michelson’s Spectral Interferometer. The beam from source S splits at the back face of G1, and the
two parts are reflected at mirrors M1 and M2 to recombine and interfere at the eye or detector. G2 is not necessary
with monochromatic light but is required to produce fringes when S is a white light source.
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figure G1 and G2 are parallel and M1 and M2 are perpendicular. Slow, accurately monitored motion of
M1 is allowed in the direction of the arrows but the mounting of M2 is fixed although the angle of the
mirror plane may be tilted so that M1 and M2 are no longer perpendicular.

The incident beam from an extended source divides at the back face of G1. A part of it is reflected back
through G1 to M1 where it is returned through G1 into the eye or detector. The remainder of the incident
beam reaches M2 via G2 and returns through G2 to be reflected at the back face of G1 into the eye or
detector where it interferes with the beam from the M1 arm of the interferometer. The presence of G2

assures that each of the two interfering beams has the same optical path in glass. This condition is not
essential for fringes with monochromatic light but it is required with a white light source where dispersion
in glass becomes important.

An observer at the detector looking into G1 will see M1, a reflected image of M2(M
′
2, say) and

the images S1 and S′2 of the source provided by M1 and M2. This may be represented by the linear
configuration of Figure 12.10 which shows how interference takes place and what type of fringes are
produced.

When the optical paths in the interferometer arms are equal and M1 and M2 are perpendicular the
planes of M1 and the image M′

2 are coincident. However a small optical path difference t between the
arms becomes a difference of 2t between the mirrored images of the source as shown in Figure 12.10.
The divided ray from a single pointP on the extended source is reflected at M1 andM2 (shown asM′

2) but
these reflections appear to come from P1 and P′

2 in the image planes of the mirrors. The path difference
between the rays from P1 and P′

2 is evidently 2t cos θ. When 2t cos θ = mλ a maximum of interference
occurs and for constant θ the interference fringe is a circle. The extended source produces a range of
constant θ values and a pattern of concentric circular fringes of constant inclination.

If the path difference t is very small and the plane of M2 is now tilted, a wedge is formed and
straight localized fringes may be observed at the narrowest part of the wedge. As the wedge thickens the
fringes begin to curve because the path difference becomes more strongly dependent upon the angle of
observation. These curved fringes are always convex towards the thin end of the wedge.

S
P

M1 S1M2
′ S2

P2

′
′P1

θ

2tt

~2 t cos θ 

Figure 12.10 Linear configuration to show fringe formation by a Michelson interferometer. A ray from point P on
the extended source S reflects at M1, and appears to come from P1 in the reflected plane S1. The ray is reflected
from M2 (shown here as M′

2) and appears to come from P′
2 in the reflected plane S′

2. The path difference at the
detector between the interfering beams is effectively 2t cos θ where t is the difference between the path lengths
from the source S to the separate mirrors M1 and M2.
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12.10 The Structure of Spectral Lines

The discussion on spatial coherence (section 12.14.1, subsection Spacial Coherence) will show that two
close identical sources emitting the same wavelength λ produce interference fringe systems slightly
displaced from each other (Figure 12.20).

The same effect is produced by a single source, such as sodium, emitting two wavelengths,λ andλ−Δλ
so that the maxima and minima of the cos2 fringes for λ are slightly displaced from those for λ−Δλ. This
displacement increases with the order of interference m until a value of m is reached when the maximum
for λ coincides with a minimum for λ−Δλ and the fringes disappear as their visibility is reduced to zero.

Worked Example

In 1862, Fizeau, using a sodium source to produce Newton’s Rings, found that the fringes disappeared at
the order m = 490 but returned to maximum visibility at m = 980. He correctly identified the presence
of two components in the spectral line.

The visibility

(Imax − Imin)/(Imax + Imin)

equals zero when

mλ = (m + 1
2)(λ−Δλ)

and for λ = 0:5893 μm and m = 490 we have Δλ = 0.0006 μm (6 Å), which are the accepted values
for the D lines of the sodium doublet.

Using his spectral interferometer, Michelson extended this work between the years 1890 and 1900,
plotting the visibility of various fringe systems and building a mechanical harmonic analyser into which
he fed different component frequencies in an attempt to reproduce his visibility curves. The sodium
doublet with angular frequency components ω and ω + Δω produced a visibility curve similar to that
of Figure 12.20 and was easy to interpret. More complicated visibility patterns were not easy to repro-
duce and the modern method of Fourier transform spectroscopy reverses the procedure by extracting the
frequency components from the observed pattern.

Michelson did however confirm that the cadmium red line, λ = 0.6438 μm, was highly monochro-
matic. The visibility had still to reach a minimum when the path difference in his interferometer arms
was 0.2 m.

Worked Example

Michelson was unlucky. Another 4.06 cm and his fringes would have disappeared. The coherence length
of a wavetrain is given by Δl = λ2/Δλ, calculated as follows:

c = νλ ∴ Δν = c

∣∣∣∣Δν

ν2

∣∣∣∣ = λ2

(
Δν

c

)
where Δν = 1/Δt(Bandwidth Theorem).

∴ Δλ = λ2/cΔt and Δl = cΔt = λ2/Δλ

Cadmium light has λ = 643.847 nm with a line width of Δλ = 0.0013 nm.

∴ Δl = (6 · 4.3 · 847 × 10−9)2/0.0013 × 10−9 = 31.89 cm
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When the Optical Path Difference 2t = Δl the fringes disappear, so at t = 15.94 cm the fringe visibility
is zero. Michelson reached t = 20 cm.

12.11 Fabry–Pérot Interferometer

The interference fringes produced by division of amplitude which we have discussed so far have been
observed as reflected light and have been produced by only two interfering beams. We now consider
fringes which are observed in transmission and which require multiple reflections. They are fringes of
constant inclination formed in a pattern of concentric circles by the Fabry–Pérot interferometer. The
fringes are particularly narrow and sharply defined so that a beam consisting of two wavelengths λ and
λ−Δλ forms two patterns of rings which are easily separated for smallΔλ. This instrument therefore has
an extremely high resolving power. The main component of the interferometer is an etalon (Figure 12.11)
which consists of two plane parallel glass plates with identical highly reflecting inner surfaces S1 and S2

which are separated by a distance d.

GlassGlass

Air

l

ttʹ = T

r2 ttʹ = RT

r t

r2 t

t

r4 ttʹ = R2T

r6 ttʹ = R3T

θ
θ
θ
θ

d

S1 S2

Figure 12.11 S1 and S2 are the highly reflecting inner surfaces of a Fabry–Pérot etalon with a constant air gap
thickness d. Multiple reflections produce parallel interfering beams with amplitudes T, RT, R2T, etc. each beam
having a phase difference δ = 4πd cos θ/λ with respect to its neighbour.
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Suppose a monochromatic beam of unit amplitude, angular frequency ω and wavelength (in air) of λ
strikes the surface S1 as shown. A fraction t of this beam is transmitted in passing from glass to air. At
S2 a further fraction t′ is transmitted in passing from air to glass to give an emerging beam of amplitude
tt′ = T . The reflection coefficient at the air −S1 and air−S2 surfaces is r so each subsequent emerging
beam is parallel but has an amplitude factor r2 = R with respect to its predecessor. Other reflection and
transmission losses are common to all beams and do not affect the analysis. Each emerging beam has a
phase lag δ = 4πd cos θ/λ with respect to its predecessor and these parallel beams interfere when they
are brought to focus via a lens.

The vector sum of the transmitted interfering amplitudes together with their appropriate phases may
be written

A = Teiωt + TRei(ωt−δ) + TR2ei(ωt−2δ) . . .

= Teiωt[1 + Re−iδ + R2e−i2δ . . .

which is an infinite geometric progression with the sum

A = Teiωt/(1 − Re−iδ)

This has a complex conjugate

A∗ = Te−iωt/(1 − Reiδ)

If the incident unit intensity is I0 the fraction of this intensity in the transmitted beam may be written

It
I0

=
|AA∗|

I0
=

T2

(1 − Re−iδ)(1 − Reiδ)
=

T2

(1 + R2 − 2R cos δ)

(See section 2.1 Complex Numbers (vi).)
or, with

cos δ = 1 − 2 sin2 δ/2

as

It
I0

=
T2

(1 − R)2 + 4R sin2 δ/2
=

T2

(1 − R)2

1

1 + [4R sin2 δ/2/(1 − R)2]

But the factor T2/(1 − R)2 is a constant, written C, so

It
I0

= C · 1

1 + [4R sin2 δ/2/(1 − R)2]

Writing CI0 = Imax, the graph of It versus δ in Figure 12.12 shows that as the reflection coefficient of
the inner surfaces is increased, the interference fringes become narrow and more sharply defined. Values
of R > 0.9 may be reached using the special techniques of multilayer dielectric coating. In one of these
techniques a glass plate is coated with alternate layers of high and low refractive index materials so that
each boundary presents a large change of refractive index and hence a large reflection. If the optical
thickness of each layer is λ/4 the emerging beams are all in phase and the reflected intensity is high.
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R = 0.04

R = 0.5

R = 0.9 R = 0.9

R = 0.5

R = 0.04

Imax

It

>δ

Figure 12.12 Observed intensity of fringes produced by a Fabry–Pérot interferometer. Transmitted intensity It
versus δ. R = r2 where r is the reflection coefficient of the inner surfaces of the etalon. As R increases the fringes
become narrower and more sharply defined.

Worked Example

If the reflection coefficient of intensity of a Fabry–Pérot etalon is 60%, what is the ratio of intensity
Imax = CI0 to that half way between two maxima?

Solution

The text gives

It = Imax
1

1 +
[

4R sin2 δ/2
(1−R)2

] where Imax = CI0

The phase difference between two maxima is δ = 2π/2 = π so in the equation for It/Imax, sin2 δ/2 =
sin2

π/2 = 1 and

It = Imax
1

1 + 4R/(1 − R)2
= Imax

1
1 + (4 · 0.6)/.42

=
Imax

1 + 15

∴ Intensity at half way between two maxima is Imax/16.

12.12 Resolving Power of the Fabry–Pérot Interferometer

Figure 12.12 shows that a value of R = 0.9 produces such narrow and sharply defined fringes that if
the incident beam has two components λ and λ−Δλ the two sets of fringes should be easily separated.
The criterion for separation depends on the shape of the fringes: the diffraction grating of section 13.16,
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Order Order

PhasePhase

In
te

ns
ity

Imax

1.0

0.5

λ λ – Δλ

Δm Δm

Δm

m + Δmm m + 1

δ 2δ 2 π0 1
2

1
2

Figure 12.13 Fabry–Pérot interference fringes for two wavelength λ and λ−Δλ are resolved at order m when
they cross at half their maximum intensity. Moving from order m to m + 1 changes the phase δ by 2π rad and the
full ‘half-value’ width of each maximum is given by Δm = 2δ1/2 which is also the separation between the maxima
of λ and λ−Δλ when the fringes are just resolved.

Resolving Power of Diffraction Grating, uses the Rayleigh criterion, but the fringes here are so sharp
that they are resolved at a much smaller separation than that required by Rayleigh.

Here the fringes of the two wavelengths may be resolved when they cross at half their maximum
intensities; that is, at It = Imax/2 in Figure 12.13.

Using the expression

It = Imax ·
1

1 + 4R sin2 δ/2
(1−R)2

we see that It = Imax when δ = 0 and It = Imax/2 when the factor

4R sin2 δ/2/(1 − R)2 = 1

The fringes are so narrow that they are visible only for very small values of δ so we may replace
sin δ/2 by δ/2 in the expression

4R sin2 δ/2/(1 − R)2 = 1
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to give the value

δ1/2 =
1 − R
R1/2

as the phase departure from the maximum, δ = 0, which produces the intensity It = Imax/2 for wave-
length λ. Our criterion for resolution means, therefore, that the maximum intensity for λ−Δλ is removed
an extra amount δ1/2 along the phase axis of Figure 12.13. This axis also shows the order of interference
m at which the wavelengths are resolved, together with the order m + 1 which represents a phase shift
of δ = 2π along the phase axis.

12.12.1 Resolving Power

In the mth order of interference we have

2d cos θ = mλ

and for fringes of equal inclination ( θ constant), logarithmic differentiation gives

λ/Δλmin = −m/Δm

where Δλmin is the minimum resovable difference between two wavelengths.
Now Δm = 1 represents a phase change of δ = 2π and the phase difference of 2.δ1/2 which just

resolves the two wavelengths corresponds to a change of order

Δm = 2.δ1/2/2π

Thus, the resolving power, defined as

R.P. =
λ

Δλmin
=

∣∣∣ m
Δm

∣∣∣ = mπ

δ1/2
=

mπR1/2

(1 − R)
=

πR1/2

1 − R
2d
λ

where Δλmin is the minimum resolvable difference between two wavelengths.

12.12.2 Finesse

The equivalent expression for the resolving power in the mth order for a diffracting grating of N lines
(interfering beams) is shown in section 13.6, Resolving Power of Diffraction Grating, to be

λ

Δλmin
= mN

so we may express

N′ = πR1/2/(1 − R)

as the effective number of interfering beams in the Fabry–Pérot interferometer.
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This quantity N′ is called the finesse of the etalon and is a measure of its quality. We see that

N′ =
2π

2δ1/2
=

1
Δm

=
separation between orders m and m + 1

‘half value’ width of mth order

Thus, using one wavelength only, the ratio of the separation between successive fringes to the narrowness
of each fringe measures the quality of the etalon. A typical value of N′ ∼ 30.

Worked Example

If the reflection coefficient intensity of a Fabry-Pérot etalon is 90% and the etalon plate separation
d = 10 mm, calculate the resolving power λ/Δλmin for length of λ = 600 nm.

Solution

λ/Δλmin = πR1/22d/(1 − R)λ =
π(.9)1/220 · 10−2 · 109

0.1 × 600

≈ 10 · π · 20 · 107

600
≈ 2π

6
· 107 ≈ 107

12.12.3 Free Spectral Range

There is a limit to the wavelength difference Δλ which can be resolved with the Fabry–Pérot interfer-
ometer. This limit is reached when Δλ is such that the circular fringe for λ in the mth order coincides
with that for λ−Δλ in the m + 1th order. The pattern then loses its unique definition and this value of
Δλ is called the free spectral range.

From the preceding section we have the expression

λ

Δλ
= − m

Δm

and in the limit when Δλ represents the free spectral range then

Δm = 1

and

Δλfsr = −λ/m

where the subscript fsr indicates free spectral range. But mλ = 2d when θ � 0 so the free spectral range

Δλfsr = −λ2/2d

But

λ2

2d
= N′Δλmin
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so

λfsr

λmin
=

πR1/2

1 − R
= Finesse

The aim therefore is to have λfsr as large as possible and λmin as small as possible.

12.12.4 The Laser Cavity

The laser cavity is in effect an extended Fabry–Pérot etalon. Mirrors coated with multi-dielectric films
can produce reflection coefficients R ≈ 0.99 and the amplified stimulated emission in the laser produces
a beam which is continuously reflected between the mirror ends of the cavity. The high value of R allows
the amplitudes of the beam in opposing directions to be taken as equal, so a standing wave system is
generated (Figure 12.14) to form a longitudinal mode in the cavity.

The superposed amplitudes after a return journey from one mirror to the other and back are written
for a wave number k and a frequency ω = 2πν as

E = A1(e
i(ωt−kx) − ei(ωt+kx))

= A1(e
−ikx − eikx)eiωt = −2iA1 sin kx eiωt

of which the real part is E = 2A1 sin kx sinωt.
If the cavity length is L, one round trip between the mirrors creates a phase change of

φ = −2Lk + 2α = −4πL
c

ν + 2α

where α is the phase change on reflection at each mirror.
For this standing wave mode to be maintained, the phase change must be a multiple of 2π, so for m

an integer

φ = m2π =
4πL

c
ν − 2α

or

ν =
mc
2L

+
αc

2πL

M = Highly reflecting mirror

M M

Figure 12.14 A longitudinal mode in a laser cavity which behaves as an extended Fabry–Pérot etalon with highly
reflecting mirrors at each end. The standing wave system acquires an extra λ/2 for unit change in the mode number
m. A typical output is shown in Figure 12.15.
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When m changes to m + 1, the phase change of 2π corresponds to an extra wavelength λ for the return
journey; that is, an extra λ/2 in the standing wave mode. A series of longitudinal modes can therefore
exist with frequency intervals Δν = c/2L determined by a unit change in m.

The intensity profile for each mode and the separation Δν is best seen by reference to Figure 12.13,
where φ ≡ δ is given by the unit change in the order of interference from m to m + 1.

The intensity profile for each cavity mode is that of Figure 12.13, where the full width at half maximum
intensity is given by the phase change

2δ1/2 =
2(1 − R)

R1/2

where R is the reflection coefficient. This corresponds to a full width intensity change over a frequency
dν generated by the phase change

dφ =
4πL

c
dν in the expression for φ above

The width at half maximum intensity for each longitudinal mode is therefore given by

4πL
c

dν =
2(1 − R)

R1/2

or

dν =
(1 − R)c

R1/22πL

For a laser 1 m long with R = 0.99, the longitudinal modes are separated by frequency intervals

Δν =
c

2L
= 1.5 × 108 Hz

Each mode intensity profile has a full width at half maximum of

dν = 10−2 c
2π

≈ 4.5 × 105Hz

Worked Example

For a He–Ne laser the mean frequency of the output at 632.8 nm is 4.74 × 1014 Hz. The pattern for
Δν and dν is shown in Figure 12.15, where the intensities are reduced under the dotted envelope as the
frequency difference from the mean is increased.

The finesse of the laser cavity is given by

Δν

dν
=

1.5 × 108

4.5 × 105
≈ 300

for the example quoted.
The intensity of each longitudinal mode is, of course, amplified by each passage of the stimulated

emission. Radiation allowed from out of one end represents the laser output but the amplification process
is dominant and the laser produces a continuous beam.
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Mean frequency

In
te

ns
ity

> <
dν

Δν< > ν

Figure 12.15 Output of a laser cavity. A series of longitudinal modes separated by frequency intervalsΔν = c/2L,
where c is the velocity of light and L is the cavity length. The modes are centred about the mean output frequency
and are modulated under the dotted envelope. For a He–Ne Laser 1 m long the separation Δν between the modes
≈ 300 full widths of a mode intensity profile at half its maximum value.

θ θ

θθ

P

Q

O

n

nʹ

d

Figure 12.16 A thin dielectric film or fibre acts as an optical wave guide. The reflection angle θ must satisfy the
relation n sin θ ≥ n′, where n′ is the refractive index of the coating over the film of refractive index n. Propagating
modes have standing wave systems across the film and constructive interference occurs on the standing wave axis
where the amplitude is a maximum. Point Q (with added phase) would be midway between the cavity walls to
coincide with a maximum amplitude of m = 1 for standing wave. Destructive interference occurs at the nodes.

12.12.5 Total Internal Reflection

Snell’s Law of Refraction gives n sin θ = n′ sinφ. When light travels from a dielectric into air n > n′

and φ > θ. Eventually at some critical angle θc, φ = 90◦ and sin θ = n′/n < 1. For glass into air
n′ = 1/1.5 and θc = 42◦. Beyond θc the light is totally internally reflected with θi = θr.

12.12.6 The Thin Film Optical Wave Guide

Figure 12.16 shows a thin film of width d and refractive index n along which light of frequency ν and
wave number k is guided by multiple internal reflections. The extent of the wave guide is infinite in the
direction normal to the page. The internal reflection angle θ must satisfy

n sin θ ≥ n′
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where n′ is the refractive index of the medium bounding the thin film surfaces. Each reflected ray is
normal to a number of wavefronts of constant phase separated by λ, where k = 2π/λ and constructive
interference is necessary for any mode to propagate. Reflections may take place at any pair of points
P and O along the film and we examine the condition for constructive interference by considering the
phase difference along the path POQ, taking into account a phase difference α introduced by reflection
at each of P and O.

Now

PO = cos θ/d

and

OQ = POcos 2θ

so with

cos 2θ = 2 cos2 θ − 1

we have

PO+OQ = 2d cos θ

giving a phase difference

Δφ = φQ − φP = −2πν
c

(n 2d cos θ) + 2α

Constructive interference requires

Δφ = m 2π

where m is an integer, so we write

m 2π =
2πν

c
n 2d cos θ − 2πΔm

where

Δm = 2α/2π

represents the phase change on reflection.
Radiation will therefore propagate only when

cos θ =
c(m +Δm)

ν2nd

for m = 0, 1, 2, 3.
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The condition n sin θ ≥ n′ restricts the values of the frequency ν which can propagate. If θ = θm for
mode m and

cos θm = (1 − sin2 θm)
1/2

then

n sin θm ≥ n′

becomes

cos θm ≤
[

1 −
(

n′

n

)2
]1/2

and ν must satisfy

ν ≥ c(m +Δm)

2d(n2 − n′2)1/2

The mode m = 0 is the mode below which ν will not propagate, while Δm is a constant for a given
wave guide. Each mode is represented by a standing wave system across the wave guide normal to the
direction of propagation. Constructive interference occurs on the axis of this wave system where the
amplitude is a maximum and destructive interference occurs at the nodes.

12.13 Division of Wavefront

12.13.1 Interference between Waves from Two Slits or Sources

In Figure 12.17, let S1 and S2 be two equal sources separated by a distance f , each generating a wave
of angular frequency ω and amplitude a. At a point P sufficiently distant from S1 and S2 only plane
wavefronts arrive with displacements

y1 = a sin(ωt − kx1) from S1

and

y2 = a sin(ωt − kx2) from S2

so that the phase difference between the two signals at P is given by

δ = k(x2 − x1) =
2π
λ
(x2 − x1)

This phase difference δ, which arises from the path difference x2 − x1, depends only on x1, x2 and the
wavelength λ and not on any variation in the source behaviour. This requires that there shall be no sudden
changes of phase in the signal generated at either source – such sources are called coherent.
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x2 – x1 = 0

x1

P

S1

x2

S2
f

δ = 2π
λ (x2 – x1) = Constant

δ = 2π
λ (x2 – x1)

 = Constant

Figure 12.17 Interference at P between waves from equal sources S1 and S2, separation f , depends only on
the path difference x2 − x1. Loci of points with constant phase difference δ = (2π/λ)(x2 − x1) are the family of
hyperbolas with S1 and S2 as foci.

The superposition of displacements at P gives a resultant

R = y1 + y2 = a[sin (ωt − kx1) + sin(ωt − kx2)]

Writing X ≡ (x1 + x2)/2 as the average distance from the two sources to point P we obtain

kx1 = kX − δ/2 and kx2 = kX + δ/2

to give

R = a[sin (ωt − kX + δ/2) + sin(ωt − kX − δ/2)]

= 2a sin (ωt − kX) cos δ/2

and an intensity

I = R2 = 4a2 sin2 (ωt − kX) cos2 δ/2
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When

cos
δ

2
= ±1

the spatial intensity is a maximum,

I = 4a2

and the component displacements reinforce each other to give constructive interference. This occurs
when

δ

2
=

π

λ
(x2 − x1) = nπ

that is, when the path difference

x2 − x1 = nλ

When

cos
δ

2
= 0

the intensity is zero and the components cancel to give destructive interference. This requires that

δ

2
= (2n + 1)

π

2
=

π

λ
(x2 − x1)

or, the path difference

x2 − x1 =

(
n +

1
2

)
λ

The loci or sets of points for which x2−x1 (or δ) is constant are shown in Figure 12.17 to form hyperbolas
about the foci S1 and S2 (in three dimensions the loci would be the hyperbolic surfaces of revolution).

12.14 Interference from Two Equal Sources of Separation f

12.14.1 Separation f � λ. Young’s Slit Experiment

One of the best-known methods for producing optical interference effects is the Young’s slit experiment.
Here the two coherent sources, Figure 12.18, are two identical slits S1 and S2 illuminated by a monochro-
matic wave system from a single source equidistant from S1 and S2. The observation point P lies on a
screen which is set at a distance l from the plane of the slits.

The intensity at P is given by

I = R2 = 4a2 cos2 δ

2
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I

S1

f

S2

X1

X1

X2

X2

to P 

to P 

to P

P

Z

Z0

f sin θ ≈ f z
l

θ

θ

P0

Figure 12.18 Waves from equal sources S1 and S2 interfere at P with phase difference δ = (2π/λ)(x2 − x1) =
(2π/λ)f sin θ ≈ (2π/λ)f(z/l). The distance l � z and f so S1P and S2P are effectively parallel. Interference fringes
of intensity I = I0 cos2 δ/2 are formed in the plane PP0.

and the distances PP0 = z and slit separation f are both very much less than 1 (experimentally ≈ 10−3l).
This is indicated by the break in the lines x1 and x2 in Figure 12.18 where S1P and S2P may be considered
as sufficiently parallel for the path difference to be written as

x2 − x1 = f sin θ = f
z
l

to a very close approximation.
Thus

δ =
2π
λ
(x2 − x1) =

2π
λ

f sin θ =
2π
λ

f
z
l

If

I = 4a2 cos2 δ

2

then

I = I0 = 4a2 when cos
δ

2
= 1

that is, when the path difference

f
z
l
= 0, ±λ,±2λ, . . .± nλ
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and

I = 0 when cos
δ

2
= 0

that is, when

f
z
l
= ±λ

2
,±3λ

2
,±

(
n +

1
2

)
λ

Taking the point P0 as z = 0, the variation of intensity with z on the screen P0P will be that of
Figure 12.18, a series of alternating straight bright and dark fringes parallel to the slit directions, the
bright fringes having I = 4a2 whenever z = nλl/f and the dark fringes I = 0, occurring when z =(
n + 1

2

)
λl/f , n being called the order of interference of the fringes. The zero order n = 0 at the point

P0 is the central bright fringe. The distance on the screen between two bright fringes of orders n and
n + 1 is given by

zn+1 − zn = [(n + 1)− n]
λl
f

=
λl
f

which is also the physical separation between two consecutive dark fringes. The spacing between
the fringes is therefore constant and independent of n, and a measurement of the spacing, l and f
determines λ.

The intensity distribution curve (Figure 12.19) shows that when the two wavetrains arrive at P exactly
out of phase they interfere destructively and the resulting intensity or energy flux is zero. Energy conser-
vation requires that the energy must be redistributed, and that lost at zero intensity is found in the intensity

peaks. The average value of cos2 δ/2 is
1
2

, and the dotted line at I = 2a2 is the average intensity value
over the interference system which is equal to the sum of the separate intensities from each slit.

There are two important points to remember about the intensity interference fringes when discussing
diffraction phenomena; these are

• The intensity varies with cos2 δ/2.
• The maxima occur for path differences of zero or integral numbers of the wavelength, whilst the

minima represent path differences of odd numbers of the half-wavelength.

Spatial Coherence
In the preceding section nothing has been said about the size of the source producing the plane wave
which falls on S1 and S2. If this source is an ideal point source A equidistant from S1 and S2, Figure 12.20,

–5π –3π 3π 5π

4a22a2

–π 0 π δ

Figure 12.19 Intensity of interference fringes is proportional to cos2 δ/2, where δ is the phase difference between
the interfering waves. The energy which is lost in destructive interference (minima) is redistributed into regions of
constructive interference (maxima).
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Imin Imax

S2

P0

B

A
d

d >> f

f

C

E

D

P

S1

Cʹ

Aʹ
Bʹ

γγ
cos

2

intensity

R
esultant

intensity

Figure 12.20 The point source A produces the cos2 interference fringes represented by the solid curve A′C′.
Other points on the line source AB produce cos2 fringes (the displaced broken curves B′) and the observed total
intensity is the curve DE. When the points on AB extend A′B′ to C′ the fringes disappear and the field is uniformly
illuminated.

then a single set of cos2 fringes is produced. But every source has a finite size, given by AB in
Figure 12.20, and each point on the line source AB produces its own set of interference fringes in the
plane PP0; the eye observing the sum of their intensities.

If the solid curve A′C′ is the intensity distribution for the point A of the source and the broken curves
up to B′ represent the corresponding fringes for points along AB the resulting intensity curve is DE.
Unless A′B′ extends to C the variations of DE will be seen as faint interference bands. These intensity
variations were quantified by Michelson, who defined the

Visibility =
Imax − Imin

Imax + Imin

The cos2 fringes from a point source obviously have a visibility of unity because the minimum intensity
Imin = 0.

When A′B′ (Figure 12.20) = A′C′, the point source fringe separation (or a multiple of it) of the field
is uniformly illuminated, fringe visibility = 0 and the fringes disappear.
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This occurs when the path difference

AS2 − BS1 ≈ AB sin γ = λ/2 where AS2 = AS1.

Thus, the requirement for fringes of good visibility imposes a limit on the finite size of the source.
Light from points on the source must be spatially coherent in the sense that AB sin γ � λ/2 in
Figure 12.20.

But for f � d,

sin γ ≈ f/2d

so the coherence condition becomes

sin γ = f/2d � λ/2AB

or

AB/d � λ/f

where AB/d measures the angle subtended by the source at the plane S1S2.
Spatial coherence therefore requires that the angle subtended by the source

� λ/f

where f is the linear size of the diffracting system. (Note also that λ/f measures θ(∼ z/l) the angular
separation of the fringes in Figure 12.18.)

Worked Example

As an example of spatial coherence we may consider the production of Young’s interference fringes
using the sun as a source.

The sun subtends an angle of 0.018 rad at the earth and if we accept the approximation

AB

d
� λ

f
≈ λ

4f

with λ = 0.5μm,
we have

f ∼ 0.5
4(0.018)

∼ 14μm

This small value of slit separation is required to meet the spatial coherence condition.
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12.14.2 Separation f � λ (kf � 1 where k = 2π/λ)

If there is a zero phase difference between the signals leaving the sources S1 and S2 of Figure 12.18 then
the intensity at some distant point P may be written

I = 4a2 cos2 δ

2
= 4Is cos

2 kf sin θ
2

≈ 4Is,

where the path difference S2P− S1P = f sin θ and Is = a2 is the intensity from each source.
We note that, since f � λ (kf � 1), the intensity has a very small θ dependence and the two sources

may be effectively replaced by a single source of amplitude 2a.

12.14.3 Dipole Radiation (f � λ)

Suppose, however, that the signals leaving the sources S1 and S2 are anti-phase so that their total phase
difference at some distant point P is

δ = (δ0 + kf sin θ)

where δ0 = π is the phase difference introduced at source.
The intensity at P is given by

I = 4 Is cos
2 δ

2
= 4 Is cos

2

(
π

2
+

kf sin θ
2

)

= 4 Is sin
2

(
kf sin θ

2

)

≈ Is(kf sin θ)2

because

kf � 1

Two anti-phase sources of this kind constitute a dipole whose radiation intensity I � Is the radiation
from a single source, when kf � 1. The efficiency of radiation is seen to depend on the product kf and,
for a fixed separation f the dipole is a less efficient radiator at low frequencies (small k) than at higher
frequencies. Figure 12.21 shows the radiation intensity I plotted against the polar angle θ and we see
that for the dipole axis normal to the direction θ = π/2, completely destructive interference occurs only
on the parallel axis θ = 0 and θ = π. There is no direction (value of θ) giving completely constructive
interference. The highest value of the radiated intensity occurs along the axis θ = π/2 and θ = 3π/2
but even this is only

I = (kf )2Is,

where

kf � 1
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θ =

Imax = Is (k f )2

I = Is (k f sin θ )2 

θ = 0θ = π

π
2

f << λ
kf << 1

θ

Dipole
axis

Figure 12.21 Intensity I versus direction θ for interference pattern between waves from two equal sources, π rad
out of phase (dipole) with separation f � λ. This pattern is achieved by an End Fire array with dipole elements
parallel to the θ = 0 to π axis, with alternate elements phased positive and negative and spaced λ/2 apart. In the
direction 0 = π/2 to 3π/2 the dipole contributions are in phase, the delay in space between alternate dipoles
matched by the phase difference π between them. In the θ = 0 to π directions alternate dipole contributions
cancel each other.

The directional properties of a radiating dipole are incorporated in the design of transmitting aerials.
In acoustics a loudspeaker may be considered as a multi-dipole source, the face of the loudspeaker
generating compression waves whilst its rear propagates rarefactions. Acoustic reflections from sur-
rounding walls give rise to undesirable interference effects which are avoided by enclosing the speaker
in a cabinet. Bass reflex or phase inverter cabinets incorporate a vent on the same side as the speaker face
at an acoustic distance of half a wavelength from the rear of the speaker. The vent thus acts as a second
source in phase with the speaker face and radiation is improved.

12.15 Interference from Linear Array of N Equal Sources

Figure 12.22 shows a linear array of N equal sources with constant separation f generating signals which
are all in phase (δ0 = 0). At a distant point P in a direction θ from the sources the phase difference
between the signals from two successive sources is given by δ = 2π

λ f sin θ and the resultant at P is found
by superposing the equal contribution from each source with the constant phase difference δ between
successive contributions. Unlike dipole radiation there is no restriction that f � λ.
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f

f

f

Nf

Nf sin θ
sin θf

θ

θ

Figure 12.22 Linear array of N equal sources separation f radiating in a direction θ to a distant point P. The
resulting amplitude at P is given by R = a[sinN(δ/2)/ sin(δ/2)] where a is the amplitude from each source and
δ = (2π/λ)f sin θ is the common phase difference between successive sources.

But we find in Appendix 3 that the resultant of such a superposition is given by

R = a
sin(Nδ/2)
sin(δ/2)

where a is the signal amplitude at each source, so the intensity may be written

I = R2 = a2 sin
2(Nδ/2)

sin2(δ/2)
= Is

sin2(Nπf sin θ/λ)

sin2(πf sin θ/λ)

= Is
sin2 Nβ

sin2 β

where Is is the intensity from each source and β = πf sin θ/λ.
If we take the case of N = 2, then

I = Is
sin2 2β

sin2 β
= 4Is cos

2 β = 4Is cos
2 δ

2

which gives us the Young’s Slit Interference pattern.
We can follow the intensity pattern for N sources by considering the behaviour of the term

sin2 Nβ/ sin2 β.
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We see that when

β =
π

λ
sin θ = 0 ± π ± 2π, etc.

i.e. when

f sin θ = 0, ±λ, ±2λ . . .± nλ

constructive interference of the order n takes place, and

sin2 Nβ

sin2 β
→ N2β2

β2
→ N2

giving

I = N2Is

that is, a very strong intensity at the Principal Maximum condition of

f sin θ = nλ

We can display the behaviour of the sin2 Nβ/ sin2 β term as follows

Numerator sin2 Nβ is zero forNβ → 0π . . .Nπ . . . 2Nπ

↓ ↓ ↓
Denominator sin2 β is zero forβ → 0 . . . π . . . 2π

The coincidence of zeros for both numerator and denominator determine the Principal Maxima with
the factor N2 in the intensity, i.e. whenever f sin θ = nλ.

Between these principal maxima are N−1 points of zero intensity which occur whenever the numerator
sin2 Nβ = 0 but where sin2 β remains finite.

These occur when

f sin θ =
λ

N
,

2λ
N

. . . (n − 1)
λ

N

The N−2 subsidiary maxima which occur between the principal maxima have much lower intensities
because none of them contains the factor N2. Figure 12.23 shows the intensity curves for N = 2, 4, 8
and N → ∞.

Two scales are given on the horizontal axis. One shows how the maxima occur at the order of interfer-
ence n = f sin θ/λ. The other, using units of sin θ as the ordinate displays two features. It shows that the
separation between the principal maxima in units of sin θ is λ/f and that the width of half the base of
the principal maxima in these units is λ/Nf (the same value as the width of the base of subsidiary max-
ima). As N increases not only does the principal intensity increase as N2 but the width of the principal
maximum becomes very small.

As N becomes very large, the interference pattern becomes highly directional, very sharply defined
peaks of high intensity occurring whenever sin θ changes by λ/f .
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Figure 12.23 Intensity of interference patterns from linear arrays of N equal sources of separation f . The hori-
zontal axis in units of f sin θ/λ gives the spectral order n of interference. The axis in units of sin θ shows that the
separation between principal maxima is given by sin θ = λ/f and the half-width of the principal maximum is given
by sin θ = λ/Nf. Such an array is known as a Broadside Array.

Sources

θ = π θ = 0

θ = π
2

θ = π
6

θ = π
6

2f
λ

Figure 12.24 Polar plot of the intensity of the interference pattern from a linear array of four sources with common
separation f = λ/2. Note that the half-width of the principal maximum is θ = π/6 satisfying the relation sin θ =
λ/Nf and that the separation between principal maxima satisfies the relation that the change in sin θ = λ/f . Such
an array is known as a Broadside Array.

The directional properties of such a broadside linear array are widely used in both transmitting and
receiving aerials and the polar plot for N = 4 (Figure 12.24) displays these features. For N large, such
an array, used as a receiver, forms the basis of a radio telescope where the receivers (sources) are set at
a constant (but adjustable) separation f and tuned to receive a fixed wavelength. Each receiver takes the
form of a parabolic reflector, the axes of which are kept parallel as the reflectors are oriented in different
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directions. The angular separation between the directions of incidence for which the received signal is a
maximum is given by sin θ = λ/f .

Problem 12.1. Suppose that Newton’s Rings are formed by the system of Figure 12.4 except that the
plano-convex lens now rests centrally in a concave surface of radius of curvature R1 and not on an optical
flat. Show that the radius rn of the nth dark ring is given by

r2
n = R1R2nλ/(R1 − R2)

where R2 is the radius of curvature of the lens and R1 > R2 (note that R1 and R2 have the same sign).

Problem 12.2. A system of Newton’s Rings is formed by an air film between a plano-convex lens and
resting on a flat plate of glass. The radius of the 40th ring is 2.6 cm. The air film is replaced by an oil
film with a refractive index of 1.69. What happens to the ring system and what is the new radius of the
40th ring?

Problem 12.3. Young’s fringes are produced by light from a slit source which falls on two narrow slits
1 mm apart and 100 mm from the slit source. The fringes are observed on a screen 1 m away. The source
is white light filtered so that only the wave band from 480 to 520 nm is used. (a) What is the separation
of the fringes? (b) Approximately how many fringes are clearly visible? (c) How wide can the source
slit be made without seriously reducing the fringe visibility?

Problem 12.4. Two identical radio masts transmit at a frequency of 1500 kilocycles per second and
are 400 m apart. Show that the intensity of the Interference pattern between these radiators is given by
I = 2I0[1 + cos(4π sin θ)], where I0 is the radiated intensity of each. Plot this intensity distribution on a
polar diagram in which the masts lie on the 90o − 270o axis to show that there are two major cones of
radiation in opposite directions along this axis and 6 minor cones at 0o, 30o, 150o, 180o, 210o and 330o.

Problem 12.5. (a) Two equal sources radiate a wavelength λ and are separated a distance λ/2. There is
a phase difference δ0 = π between the signals at source. If the intensity of each source is Is, show that
the intensity of the radiation pattern is given by

I = 4Is sin
2
(π

2
sin θ

)

where the sources lie on the axis ±π/2.
Plot I versus θ.

(b) If the sources in (a) are now λ/4 apart and δ0 = π/2 show that

I = 4Is
[
cos2 π

4
(1 + sin θ)

]

Plot I versus θ.

Problem 12.6. The minimum wavelength difference that a Fabry-Pérot spectrometer with reflectivity
R = 90% can resolve is Δλmin = 2.947× 10−11 m. Calculate the value of the free spectral range Δλfsr

and the number of interfering beams which contribute to the fringe intensity.

Problem 12.7. (a) A large number of identical radiators is arranged in rows and columns to form a lattice
of which the unit cell is a square of side d. Show that all the radiation from the lattice in the direction θ
will be in phase at a large distance if tan θ = m/n, where m and n are integers.
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(b) If the lattice of section (a) consists of atoms in a crystal where the rows are parallel to the crystal
face, show that radiation of wavelength λ incident on the crystal face at a grazing angle of θ is scattered
to give interference maxima when 2d sin θ = nλ (Bragg reflection).

Problem 12.8. Show that the separation of equal sources in a linear array producing a principal maxi-
mum along the line of the sources (θ = ±π/2) is equal to the wavelength being radiated. Such a pattern
is called ‘end fire’. Determine the positions (values of θ) of the secondary maxima for N = 4 and plot
the angular distribution of the intensity.

Problem 12.9. The first multiple radio astronomical interferometer was equivalent to a linear array of
N = 32 sources (receivers) with a separation f = 7m working at a wavelength λ = 0.21m. Show
that the angular width of the central maximum is 6 min of arc and that the angular separation between
successive principal maxima is 1o42′.

Problem 12.10. Two transmitters radiate signals at the same frequency in a Broadside Array. Their
phase difference δ0 = 0 in the bracket (δ0 + kf sin θ) (section 12.14.3). The central beam is normal to
the axis joining the transmitters. The effect of changing δ0 is to vary sin θ and rotate the central beam. If
f/λ = 3 and a phase change of δ0 = π/3 show that the main beam is rotated by θ = 3◦09′.
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Waves in Optics (2) Diffraction

13.1 Diffraction

Diffraction is classified as Fraunhofer or Fresnel. In Fraunhofer diffraction the pattern is formed at such
a distance from the diffracting system that the waves generating the pattern may be considered as plane.
A Fresnel diffraction pattern is formed so close to the diffracting system that the waves generating the
pattern still retain their curved characteristics.

13.1.1 Fraunhofer Diffraction

The single narrow slit. Earlier in the last chapter it was stated that the difference between interference
and diffraction is merely one of scale and not of physical behaviour.

Suppose we contract the scale of the N equal sources separation f of Figure 12.22 until the separation
between the first and the last source, originally Nf , becomes equal to a distance d where d is now assumed
to be the width of a narrow slit on which falls a monochromatic wavefront of wavelength λ where d ∼ λ.
Each of the large number N equal sources may now be considered as the origin of secondary wavelets
generated across the plane of the slit on the basis of Huygens’ Principle to form a system of waves
diffracted in all directions.

When these diffracted waves are focused on a screen as shown in Figure 13.1 the intensity distribution
of the diffracted waves may be found in terms of the aperture of the slit, the wavelength λ and the angle
of diffraction θ. In Figure 13.1 a plane light wave falls normally on the slit aperture of width d and
the waves diffracted at an angle θ are brought to focus at a point P on the screen PP0. The point P is
sufficiently distant from the slit for all wavefronts reaching it to be plane and we limit our discussion to
Fraunhofer Diffraction.

Finding the amplitude of the light at P is the simple problem of superposing all the small contribu-
tions from the N equal sources in the plane of the slit, taking into account the phase differences which
arise from the variation in path length from P to these different sources. We have already solved this

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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Plane of
diffraction
pattern

Focusing
lens

Condenser
lens

P

P0
Source of
monochromatic
light

Slit of
width d

d sin θ 

d θ

Figure 13.1 A monochromatic wave normally incident on a narrow slit of width d is diffracted through an angle θ
and the light in this direction is focused at a point P. The amplitude at P is the superposition of all the secondary
waves in the plane of the slit with their appropriate phases. The extreme phase difference from contributing waves
at opposite edges of the slit is φ = 2πd sin θ/λ = 2α.

problem several times. Here we reapply the result already used in Appendix 3, that the intensity at P is
given by

I = Is
sin2 Nβ

sin2 β
where Nβ =

π

λ
Nf sin θ

is half the phase difference between the contributions from the first and last sources. But now Nf = d the
slit width, and if we replace β by α where α = (π/λ)d sin θ is now half the phase difference between
the contributions from the opposite edges of the slit, the intensity of the diffracted light at P is given by

I = Is =
sin2(π/λ)d sin θ

sin2(π/λN)d sin θ
= Is

sin2 α

sin2(α/N)

For N large

sin2 α

N
→

(α

N

)2

and we have

I = N2Is
sin2 α

α2
= I0

sin2 α

α2

Plotting I = I0(sin
2 α/α2) with α = (π/λ)d sin θ in Figure 13.2 we see that its pattern is symmetrical

about the value

α = θ = 0
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d sin θ 

d sin θ 

–2π 2π

l0

l0

π

π–π

λ

λ

0

α =

α2

sin2α

α

2λ

Figure 13.2 Diffraction pattern from a single narrow slit of width d has an intensity I = I0 sin2 α/α2 where
α = πd sin θ/λ.

where I = I0 because sinα/α → 1 as α → 0. The intensity I = 0 whenever sinα = 0 that is, whenever
α is a multiple of π or

α =
π

λ
d sin θ = ±π ± 2π ± 3π, etc.

giving

d sin θ = ±λ± 2λ± 3λ, etc.

This condition for diffraction minima is the same as that for interference maxima between two slits
of separation d, and this is important when we consider the problem of light transmission through more
than one slit.

The intensity distribution maxima occur whenever the factor sin2 α/α2 has a maximum; that is, when

d
dα

(
sinα

α

)2

=
d

dα

(
sinα

α

)
= 0

or

cosα

α
− sinα

α2
= 0

This occurs whenever α = tanα, and Figure 13.3 shows that the roots of this equation are closely
approximated by α = ±3π/2,±5π/2, etc. (see problem at end of chapter on exact values).

Table 13.1 shows the relative intensities of the subsidiary maxima with respect to the principal
maximum I0.

The rapid decrease in intensity as we move from the centre of the pattern explains why only the first
two or three subsidiary maxima are normally visible.
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π 3π 

tan α

tan α

y

0
22

0

y = α

Figure 13.3 Position of principal and subsidiary maxima of single slit diffraction pattern is given by the
intersections of y = α and y = tanα.

Table 13.1 Relative intensities of subsidiary maxima in
Figure 13.2 where I0 is the principal maximum intensity, the
slit width is d and a = n/λd sin θ. These are the origins of a, b
and c in Figure 13.9.

α sin2 α
α2

I0sin
2α

α2

0 1 I0
3π
2

4
9π2

I0
22.2

5π
2

4
25π2

I0
61.7

7π
2

4
49π2

I0
121

13.2 Scale of the Intensity Distribution

The width of the principal maximum is governed by the condition d sin θ = ±λ. A constant wavelength
λ means that a decrease in the slit width d will increase the value of sin θ and will widen the principal
maximum and the separation between subsidiary maxima. The narrower the slit the wider the diffraction
pattern; that is, the narrower the pulse in x-space the greater the region in k- or wave number space
required to represent it.

13.3 Intensity Distribution for Interference with Diffraction from N Identical Slits

The extension of the analysis from the example of one slit to that of N equal slits of width d and common
spacing f , Figure 13.4, is straightforward.

To obtain the expression for the intensity at a point P of diffracted light from a single slit we considered
the contributions from the multiple equal sources across the plane of the slit.



�

�

“Pain-Driver” — 2015/1/10 — 10:52 — page 291 — #5
�

�

�

�

�

�

Waves in Optics (2) Diffraction 291
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N identical slits
width d
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π

λ

λ
π

Pd

f

sin2 α

d sinθ

f sinθ

α2

sin2Nβ
sin2β

α =

θ

β =

Figure 13.4 Intensity distribution for diffraction by N equal slits is I = I0 sin2 α
α2

sin2 Nβ
sin2 β

the product of the diffraction
intensity for one slit, I0 sin2 α/α2 and the interference intensity between N sources sin2 Nβ/ sin2 β, where α =
(π/λ)d sin θ and β = (π/λ)f sin θ.

We obtained the result

I = I0
sin2 α

α2

by contracting the original linear array of N sources of spacing f in Appendix 3. If we expand the system
again to recover the linear array, where each source is now a slit giving us the diffraction contribution

Is = I0
sin2 α

α2

we need only insert this value at Is in the original expression for the interference intensity,

I = Is
sin2 Nβ

sin2 β

in section 12.15, Interference from Linear Array of N Equal Sources, where

β =
π

λ
f sin θ

to obtain, for the intensity at P in Figure 13.4, the value

I = I0
sin2 α

α2

sin2 Nβ

sin2 β
,
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where

α =
π

λ
d sin θ

Note that this expression combines the diffraction term sin2 α/α2 for each slit (source) and the inter-
ference term sin2 Nβ/ sin2 β from N sources (which confirms what we expected from the opening
paragraphs on interference). The diffraction pattern for any number of slits will always have an envelope

sin2 α

α2
(single slit diffraction)

modifying the intensity of the multiple slit (source) interference pattern

sin2 Nβ

sin2 β

13.4 Fraunhofer Diffraction for Two Equal Slits (N = 2)

When N = 2 the factor

sin2 Nβ

sin2 β
= 4 cos2 β

so that the intensity

I = 4I0
sin2 α

α2
cos2 β

the factor 4 arising from N2 whilst the cos2 β term is familiar from the double source interference discus-
sion. The intensity distribution for N = 2, f = 2d, is shown in Figure 13.5. The intensity is zero at the
diffraction minima when d sin θ = nλ. It is also zero at the interference minima when f sin θ = (n+ 1

2 )λ.

Missing order

0

λ 2λ
n

f = 2d

d sinθ

1 2 3 4

Figure 13.5 Diffraction pattern for two equal slits, showing interference fringes modified by the envelope of a
single slit diffraction pattern. Whenever diffraction minima coincide with interference maxima a fringe is suppressed
to give a ‘missing order’ of interference.
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At some value of θ an interference maximum occurs for f sin θ = nλ at the same position as a
diffraction minimum occurs for d sin θ = mλ.

In this case the diffraction minimum suppresses the interference maximum and the order n of
interference is called a missing order.

The value of n depends upon the ratio of the slit spacing to the slit width for

nλ
mλ

=
f sin θ
d sin θ

i.e.

n
m

=
f
d
=

β

α

Thus, if

f
d
= 2

the missing orders will be n = 2, 4, 6, 8, etc. for m = 1, 2, 3, 4, etc.
The ratio

f
d
=

β

α

governs the scale of the diffraction pattern since this determines the number of interference fringes
between diffraction minima and the scale of the diffraction envelope is governed by α.

13.5 Transmission Diffraction Grating (N Large)

A large number N of equivalent slits forms a transmission diffraction grating where the common
separation f between successive slits is called the grating space.

Again, in the expression for the intensity

I = I0
sin2 α

α2

sin2 Nβ

sin2 β

the pattern lies under the single slit diffraction term (Figure 13.6).

sin2 α

α2

The principal interference maxima occur at

f sin θ = nλ

having the factor N2 in their intensity and these are observed as spectral lines of order n. We see, however,
that the intensities of the spectral lines of a given wavelength decrease with increasing spectral order
because of the modifying sin2 α/α2 envelope.
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Single slit
diffraction envelope

n = spectral order

N- 2 subsidiary maxima

n = 0 n = 1 n = 2 n = 3

The intensity of each
spectral line contains
the factor N2

Figure 13.6 Spectral line of a given wavelength produced by a diffraction grating loses intensity with increasing
order n as it is modified by the single slit diffraction envelope. At the principal maxima each spectral line has an
intensity factor N2 where N is the number of lines in the grating.

13.6 Resolving Power of Diffraction Grating

The importance of the diffraction grating as an optical instrument lies in its ability to resolve the spectral
lines of two wavelengths which are too close to be separated by the naked eye. If these two wavelengths
are λ and λ+ dλ where dλ/λ is very small the Resolving Power for any optical instrument is given by
the ratio λ/dλ.

Two such lines are just resolved, according to Rayleigh’s Criterion, when the maximum of one falls
upon the first minimum of the other. If the lines are closer than this their separate intensities cannot be
distinguished.

If we recall that the spectral lines are the principal maxima of the interference pattern from many
slits we may display Rayleigh’s Criterion in Figure 13.7 where the nth order spectral lines of the two
wavelengths are plotted on an axis measured in units of sin θ. We have already seen in Figure 12.23 that
the half width of the spectral lines (principal maxima) measured in such units is given by λ/Nf where
N is now the number of grating lines (slits) and f is the grating space. In Figure 13.7 the nth order of
wavelength λ occurs when

f sin θ = nλ

whilst the nth order for λ+ dλ satisfies the condition

f [sin θ +Δ(sin θ)] = n(λ+ dλ)

so that

fΔ(sin θ) = n dλ

Rayleigh’s Criterion requires that the fractional change

Δ(sin θ) =
λ

Nf
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nth order spectral
line for λ + dλ

nth order spectral
line for λ 

f sin θ = nλ

f (sin θ + ∆sin θ) = n(λ + dλ)

∆(sin θ) = λlNf

sin θ

Figure 13.7 Rayleigh’s criterion states that the two wavelengths λ and λ+dλ are just resolved in the nth spectral
order when the maximum of one line falls upon the first minimum of the other as shown. This separation, in units
of sin θ, is given by λ/Nf where N is the number of diffraction lines in the grating and f is the grating space. This
leads to the result that the resolving power of the grating λ/dλ = nN.

so that

fΔ(sin θ) = n dλ =
λ

N

Hence the Resolving Power of the diffraction grating in the nth order is given by

λ

dλ
= Nn

Note that the Resolving Power increases with the number of grating lines N and the spectral order n.
A limitation is placed on the useful range of n by the decrease of intensity with increasing n due to the
modifying diffraction envelope

sin2 α

α2
(Figure 13.6)
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13.7 Resolving Power in Terms of the Bandwidth Theorem

A spectral line in the nth order is formed when f sin θ = nλ where f sin θ is the path difference between
light coming from two successive slits in the grating. The extreme path difference between light coming
from opposite ends of the grating of N lines is therefore gives by

Nf sin θ = Nnλ

and the time difference between signals travelling these extreme paths is

Δt =
Nnλ

c

where c is the velocity of light.
The light frequency ν = c/λ has a resolvable differential change

|Δν| = c
|Δλ|
λ2

=
c

Nnλ

because Δλ/λ = 1/Nn (from the inverse of the Resolving Power).
Hence

Δν =
c

Nnλ
=

1
Δt

or ΔνΔt = 1 (the Bandwidth Theorem).
Thus, the frequency difference which can be resolved is the inverse of the time difference between

signals following the extreme paths

(ΔνΔt = 1 is equivalent of course to ΔωΔt = 2π)

If we now write the extreme path difference as

Nnλ = Δx

we have, from the inverse of the Resolving Power, that

Δλ

λ
=

1
Nn

so

|Δλ|
λ2

= Δ

(
1
λ

)
=

Δk
2π

=
1

Nnλ
=

1
Δx

where the wave number k = 2π/λ.
Hence we also have

ΔxΔk = 2π



�

�

“Pain-Driver” — 2015/1/10 — 10:52 — page 297 — #11
�

�

�

�

�

�

Waves in Optics (2) Diffraction 297

where Δk is a measure of the resolvable wavelength difference expressed in terms of the difference Δx
between the extreme paths.

In section 3.5 we discussed the quality factor Q of an oscillatory system. Note that the resolving power
may be considered as the Q of an instrument such as the diffraction grating or a Fabry–Pérot cavity for

λ

Δλ
=

∣∣∣ ν

Δν

∣∣∣ = ω

Δω
= Q

13.8 Fraunhofer Diffraction from a Rectangular Aperture

In Figure 13.8 a plane wavefront is diffracted as it passes through the rectangular aperture of dimensions a
in the x direction and b in the y direction. The vector k, which is normal to the diffracted wavefront, has
direction cosines l and m with respect to the x and y axes respectively. This wavefront is brought to a
focus at point P and the amplitude at P is the superposition of the contributions from all points (x, y)
in the aperture with their appropriate phases.

A typical point (x, y) in the aperture is denoted by the vector r′; the phase difference between the contri-
bution from this point and that fromO, the central point of the aperture, is 2π/λ (path difference). The path
difference is theprojectionofvectorr′ upon thevectork so thephasedifference is r′ · k = (2π/λ)(lx + my)
where (lx + my) is the projection of r′ upon k. We write 2πl/λ = kx and 2πm/λ = ky.

First of all we sum the simple harmonic contributions to P from a strip parallel to the x axis of length a
and width dy divided into areas dxdy each of which makes the same contribution to the final image at P.
The explanation of the notation dx is the following. This strip passes through O.

A differential change of the cosine l as x moves from −a/2 to +a/2 appears in the mathematical
technique of the Fourier Transform which is beyond the scope of this book. However a constant change
of phase with ldx may be achieved by varying the length dx and associating each phase change δ with
the average value dx where ndx = a (the length of the aperture). There is no loss of accuracy in the final
result which depends only on the phases at x = ±a/2 both of which have equal values of the cosine l
and are precisely defined by 2πlx/λ with x = ±a/2. The first of the n harmonic contributions to the sum
from the strip comes from the edge at x = −a/2 which has a phase difference of −2πla/2λ from the

Plane of
diffraction
image

P

a

b
0

y

xy

lx+my

x
kr′

Light diffracted
in direction k
focuses at p

Plane wavefront
normally incident
on rectangular
aperture

Plane of
focusing
lens

Figure 13.8 Plane waves of monochromatic light incident normally on a rectangular aperture are diffracted in
a direction k. All light in this direction is brought to focus at P in the image plane. The amplitude at P is the
superposition of contributions from all the typical points, x, y in the aperture plane with their appropriate phase
relationships.
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contribution of the centre point O which is zero. The phase difference between O (x = 0) and the other
end of the strip x = ±a/2 is 2πla/2λ so the phase difference between the first and last contributions is
2πla/λ = nδ (with n large).

Applying the geometry of Appendix 3 to Figure 13.8, we have the resultant sum of all contributions
as R = dx sin(nδ/2)/ sin δ/2 with a phase angle nδ

2 = α as half the difference in phase between the first
and last contributions to the sum. When δ is very small we may write with the text in the final section of
Appendix 3,

Rx = dx
sin(nδ/2)
sin δ/2

= dx
sinα

α/n
= ndx

sinα

α
= a

sinα

α
where α = πla/λ

This is the result we expect from adding harmonic contributions with a small constant phase difference
between neighbours. Repeating the process with a strip of length b and width dx parallel to the y axis
and passing through O, we find the resultant to be Ry = b sin β

β where β = πmb/λ.

This gives a conbined resultant amplitude RxRy = ab sinα
α

sin β
β where the product ab is the area of the

aperture each unit dxdy of which contributes the same radiation to the intensity of the image at P resulting
in an intensity (RxRy)

2 = I = I0
sin2 α
α2

sin2 β
β2 . The intensities relative to I0 depend upon the product of the

two diffractive terms sin2 α
α2 and sin2 β

β2 . The diffraction pattern from such an aperture together with a plan
showing the relative intensities is given in Figure 13.9 (see Table 13.1). Note: a and b in Table 13.1 are
those of Figure 13.9 and are not the aperture dimensions. See Appendix 7 for a more formal derivation.
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Figure 13.9 The distribution of intensity in the diffraction pattern from a rectangular aperture is seen as the
product of two single-slit diffraction patterns, a wide diffraction pattern from the narrow dimension of the slit and
a narrow diffraction pattern from the wide dimension of the slit. This ‘rotates’ the diffraction pattern through 90◦

with respect to the aperture. Note that a and b in Figure 13.9 are not the length and width of the aperture. For
the origin of the values of a, b and c see Table 13.1.
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13.9 Fraunhofer Diffraction from a Circular Aperture

The Fraunhofer diffraction pattern from a circular aperture is always circular as in Figures 13.10a
and 13.10b. It has a bright central disc surrounded by concentric rings alternately dark and bright with
decreasing intensity. Figure 13.10a is the general pattern. Figure 13.10b is a special case called an Airy
disc which results from even the smallest point source. It limits the resolving power of optical instruments
and modifies Rayleigh’s criterion.

A graph of the intensity of these patterns is shown in Figure 13.11 with a series of minima defining the
radial centres r′ of the dark rings. Figure 13.12 analyses the method by which the pattern is produced.

(a) (b)

Figure 13.10 (a) Fraunhofer diffraction pattern from a circular aperture. (b) Airy disc Fraunhofer diffraction
pattern from the small circular point source.

Relative intensity of diffraction pattern
from circular aperture

(direction cosine)x

1.22π 2.32π

1.16λ.61λ

kx =

r = 0

2

r′

I ∝

2π

2π

r0 sinθ′z

r0 sinθ′z

λ

λ

J1(kxr0)

kxr0

Figure 13.11 Intensity of the diffraction pattern from a circular aperture of radius r0 versus r′, the radius of the
pattern. The intensity is proportional to [J1(kxr0)/kxr0]

2, where J1 is Bessel’s function of order 1. The pattern consists
of a central circular principal maximum surrounded by a series of concentric rings of minima and subsidiary
maxima of rapidly diminishing intensity.
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Figure 13.12 (a) A plane monochromatic wave diffracted in a direction k from a circular aperture is focused at
a point P in the image plane. Contributions from all points x, y in the aperture superpose at P with appropriate
phase relationships. (b) The direction k of (a) is chosen to lie wholly in the xz-plane to simplify the analysis. No
generality is lost because of circular symmetry. The variation of the amplitude of diffracted light along any one
radius determines the complete pattern.

The principle of pattern formation is the same as that of the rectangular aperture. A plane wave illu-
minates the aperture uniformly. The aperture is divided into concentric circular areas each having its
own constant phase difference with respect to the centre r = 0. These areas contribute to the final
image according to their size and their respective phase differences. A concentric ring is defined by its
radius r from the centre of the aperture, its width dr, its length 2πr and its area 2πrdr. The areas are
integrated from r = 0 to the radius r0 of the aperture. The mathematics is more complex than in the
case of the rectangular aperture and the result is described in terms of a Bessel function, the y axis of
Figure 13.11, a power series which satisfies circular boundary conditions in r and θ in the same way that
sines and cosines satisfy the boundary conditions of a rectangular aperture in Cartesian coordinates. The
appropriate function here is written

J1(x
′) =

x′

2
− x′3

22 · 4
+

x′5

22 · 42 · 6
− x′7

22 · 42 · 62 · 8

where x′ = kxr0 = 2πlr0/λ = 2πr0 sin θ
′
z/λ where θ′z is the angle between the vector k and the z axis and

defines the angle of diffraction. The intensity of the pattern is proportional to [ J1(kxr0)
kxr0

]2 and Figure 13.11
shows that the first minimum occurs at r0 sin θ

′
z = 0.61λ and that the next minimum is at r0 sin θ

′
z =

1.16λ. These minima locate the centres of the dark bands. Reducing the radius r0 of the aperture increases
the values of θ′z for the minima in accordance with ΔxΔk ≈ 2π in the Bandwidth Theorem. Figure 13.12
shows that the analysis is simplified by choosing the direction of the vector k(z) of the diffracted light
to lie wholly in the xz plane and to consider only the projection of a point r(x, y) on k(z) where r is the
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∆ϕ

∆ϕ

Figure 13.13 Two stars with angular separation Δφ form separate Airy disc images when viewed through a
telescope. Rayleigh’s criterion (Figure 13.7) states that these images are resolved when the central maximum of
one falls upon the first minimum of the other.

radius of the ring. Because of circular symmetry the variation of the amplitudes of diffracted light along
any one radius determines the complete diffraction pattern.

13.10 The Airy Disc and Resolving Power

When the two components of a double star with an angular separation of Δφ are viewed through a
telescope with an objective lens of focal length l and diameter d their images will appear as two Airy
discs separated by the angle Δφ. The two diffraction patterns will be resolved if Δφ is much wider than
the angular width of a disc but not if it is much less. Lord Rayleigh’s criterion (Figure 13.7) gives the
critical angle Δφ for resolution as that when the maximum of one disc falls on the first minimum of the
other, Figure 13.13. Figure 13.11 then gives

Δφ =
0.61λ

r0
=

1.22λ
d

(Δφ = Θ′
z in Figure 13.11)

where λ is the radiated wavelength.
This condition is known as diffraction-limited resolution. A poor quality lens will introduce aberrations

and will not meet this criterion.

13.11 The Michelson Stellar Interferometer

In the discussion on Spatial Coherence (section 12.14.1) we saw that the relative displacement of the
interference fringes from separate sources 1 and 2 led to a partial loss of the visibility of the fringes
defined as
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M2
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Figure 13.14 In the Michelson stellar interferometer Light from stars A and B strike the movable outer mirrors
M1 and M4 to be reflected via fixed mirrors M2 and M3 through two slits S1 and S2 and a lens to form interference
fringes. Light from Star A forms its zero order fringe at P0 and its first-order fringe at P1 when S2N = d sin θ = λ0.
The minimum separation h of M1M4 is found for light from B to reduce the fringe visibility to zero, that is, when
the path difference h = sinφ = λ0/2. The angles are so small that θ and φ replace their sines. Note that the fringe
separation depends on d, but the fringe visibility is governed by h.

V =
Imax − Imin

Imax + Imin

and eventually when the displacement was equal to half a fringe width V = 0 and there was a complete
loss of contrast.

Michelson’s Stellar Interferometer (1920) used this to measure the angular separation between the two
components of a double star or, alternatively, the angular width of a single star.

Initially, we take the simplest case to illustrate the principle and then discuss the practical problems
which arise. We assume in the first instance that light from the stars is monochromatic with a wave-
length λ0. Michelson used four mirrors, M1, M2, M3 and M4, mounted on a girder with two slits S1

and S2 in front of the lens of an astronomical telescope, Figure 13.14. The slits were perpendicular to
the line joining the two stars. The separation h of the outer pair of mirrors (∼metres) was increased until
the fringes observed in the focal plane of the objective just disappeared. Assuming zero path difference
between M1M2 P0 and M4M3 P0 the light from star A will form its zero order fringe maximum at P0 and
its first-order fringe maximum at P1, due to a path difference S2N = d sin θ = λ0 so the fringe spacing
is determined by d, the separation between the inner mirrors M2 and M3.
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The condition for fringe disappearance is that rays from star B will form a first-order maximum fringe
midway between P0 and P1, that is, when

CM1M2S1P0 −M4M3S2P0 = CM1 = h sinφ = λ0/2

The condition for fringe disappearance is therefore determined by h while the angular size of the fringes
depends on d so there is an effective magnification of h/d over a fringe system produced by the slits
alone.

The angles θ and φ are small and the minimum value of h is found which produces V = 0 so that the
fringes disappear at

hφ = λ0/2 or h =
λ

2φ

Measurement of h thus determines the double-star angular separation.
Several assumptions have been made in this simple case presentation. First, that the intensities of

the light radiated by the stars are equal and that they are coherent sources. In fact, even if the sources
are incoherent their radiation is essentially coherent at the interferometer. Second, the radiation is not
monochromatic and only a few fringes around the zero order were visible so λ0 must be taken as a
mean wavelength. Finally, the introduction of a lens into the system inevitably creates Airy discs and the
visibility must be expressed in terms of the Airy disc intensity distribution. This results in

V = 2

(
J1(u)

u

)

where

u = πhφ/λ0

If this visibility is plotted against hφ/λ0 its first zero occurs at 1.22 so the fringes disappear when
h = 1.22λ0/φ.

Worked Example

In fact, Michelson first used his interferometer in 1920 to measure the angular diameter of the star
Betelgeuse, the colour of which is orange. His astronomical telescope was the 2.54 m (100 in.) tele-
scope of the Mt. Wilson Observatory. A mean wavelength λ0 = 570× 10−9 m was used and the fringes
vanished when h = 3.07 m to give an angular diameter φ = 22.6 × 10−8 radians or 0.047 arc sec-
onds. The distance of Betelgeuse from the Earth was known and its diameter was calculated to be about
384 × 106 km, roughly 280 times that of the Sun. This magnitude is greater than that of the orbital
diameter of Mars around the Sun.

13.12 Fresnel Diffraction

13.12.1 The Straight Edge and Slit

Our discussion of Fraunhofer diffraction considered a plane wave normally incident upon a slit in a plane
screen so that waves at each point in the plane of the slit were in phase. Each point in the plane became
the source of a new wavefront and the superposition of these wavefronts generated a diffraction pattern.
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L

P

R

b

d

Figure 13.15 Spherical wave at slit aperture width d converges at point P. Fresnel diffraction requires b =
d2/8L � λ i.e. L � d2/8λ. L is the Rayleigh distance. Beyond L the diffraction merges from Fresnel to Fraunhofer.

At a sufficient distance from the slit the superposed wavefronts were plane and this defined the condition
for Fraunhofer diffraction. Its pattern follows from summing the contributions from these waves together
with their relative phases and in Appendix 3 we see that these form an arc of constant length. When the
contributions are all in phase the arc is a straight line but as the relative phases increase the arcs curve to
form closed circles of decreasing radii. The length of the chord joining the ends of the arc measure the
resulting amplitude of the superposition and the square of that length measures the light intensity within
the pattern.

Nearer the slit where the superposed wavefronts are not yet plane but retain their curved character
the diffraction pattern is that of Fresnel. There is no sharp division between Fresnel and Fraunhofer
diffraction, the pattern changes continuously from Fresnel to Fraunhofer as the distance from the slit
increases.

Figure 13.15 shows a spherical wavefront at a slit aperture of width d. The wavefront converges at
a point P located at a distance L from the aperture. If R is the radius of curvature of the wavefront the
sagitta b = (d/2)2/2R and the phase difference from the centre of the sagitta to the centre of the slit is
φ = 2π

λ
b2

2L where b/L � 1. Now b = ( d
2 )

2 1
2L = d2

8L when d2/L2 � 1 and L ≈ R.
Fraunhofer diffraction (plane wavefront) requires the curvature at the slit to be sufficiently large that

b � λ so that L � d2/8λ. Below the value of L the diffraction is Fresnel; beyond L the diffraction
merges into Fraunhofer. L is called the Rayleigh distance.

The Fresnel pattern is determined by a procedure exactly similar to that in Fraunhofer diffraction,
an arc of constant length is obtained but now it convolutes around the arms of a pair of joined spirals,
Figure 13.19, and not around closed circles.

An understanding of Fresnel diffraction is most easily gained by first considering, not the slit, but a
straight edge formed by covering the lower half of the incident plane wavefront with an infinite plane
screen. The undisturbed upper half of the wavefront will contribute one half of the total spiral pattern,
that part in the first quadrant.

The Fresnel diffraction pattern from a straight edge, Figure 13.16, has several significant features. In
the first place light is found beyond the geometric shadow; this confirms its wave nature and requires
a Huygens wavelet to contribute to points not directly ahead of it. Also, near the edge there are fringes
of intensity greater and less than that of the normal undisturbed intensity (taken here as unity). On this
scale the intensity at the geometric shadow is exactly 0.25.

To explain the origin of this pattern we consider the point O at the straight edge of Figure 13.17 and
the point P directly ahead of O. The line OP defines the geometric shadow. Below O the screen cuts off
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Undisturbed
intensity

Geometric
shadow

0.25

1.0

Figure 13.16 Fresnel diffraction pattern from a straight edge. Light is found within the geometric shadow and
fringes of varying intensity form the observed pattern. The intensity at the geometric shadow is 0.25 of that due
to the undisturbed wavefront.

P

HP - OP• ≈ 1
2 h2//

0

Semi-infinite
screen

H

h

I

Figure 13.17 Line OP normal to the straight edge defines the geometric shadow. The wavefront at height h
above 0 makes a contribution to the disturbance at P which has a phase lag of πh2/λl with respect to that from 0.
The total disturbance at P is the vector sum (amplitude and phase) of all contributions from the wavefront section
above 0.

the wavefront. The phase difference between the contributions to the disturbance at P from O and from
a point H, height h above O is given by

Δ(h) =
2π
λ
(HP−OP) � 2π

λ

1
2

h2

l

(taking h as a sagitta and l ≈ radius of curvature)
where OP = l and higher powers of h2/l2 are neglected.
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Figure 13.18 Variation of the width of each half period zone with height h above the straight edge.

We now divide the wavefront above O into strips which are parallel to the infinite straight edge and
we call these strips ‘half period zones’. This name derives from the fact that the width of each strip is
chosen so that the contributions to the disturbance at P from the lower and upper edges of a given strip
differ in phase by π radians.

Since the phase Δ(h) ∝ h2 we shall not expect these strips or half period zones to be of equal width
and Figure 13.18 shows how the width of each strip decreases as h increases. The total contribution from
a strip will depend upon its area; that is, upon its width. The amplitude and phase of the contribution at P
from a narrow strip of width dh at a height h above O may be written as (dh)eiΔ where Δ = πh2/λl.

This contribution may be resolved into two perpendicular components

dx = dh cosΔ and dy = dh sinΔ

If we now plot the vector sum of these contributions the total disturbance at P from that section of
the wavefront measured from O to a height h will have the component values x =

∫
dx and y =

∫
dy.

These integrals are usually expressed in terms of the dimensionless variable u = h(2/λl)1/2, the physical
significance of which we shall see shortly.

We then have Δ = πu2/2 and dh = (λl/2)1/2du and the integrals become

x =

∫
dx =

∫ u

0
cos(πu2/2)du

and

y =

∫
dy =

∫ u

0
sin(πu2/2)du

These integrals are called Fresnel’s Integrals and the locus of the coordinates x and y with variation
of u (that is, of h) is the spiral in the first quadrant of Figure 13.19. The complete figure is known as
Cornu’s spiral.
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Figure 13.19 Cornu spiral associated with Fresnel diffraction. The spiral in the first quadrant represents the
contribution from the upper half of an infinite plane wavefront above an infinite straight edge. The third quadrant
spiral results from the downward withdrawal of the straight edge. The width of the wavefront contributing to the
diffraction pattern is correlated with the length u along the spiral. The upper half of the wavefront above the straight
edge contributes an intensity (0Z1)

2 which is the square of the length of the chord from the origin to the spiral
eye. This intensity is 0.25 of the intensity (Z1Z′

1)
2 due to the whole wavefront.

As h, the width of the contributing wavefront above the straight edge, increases, we measure the
increasing length u from 0 along the curve of the spiral in the first quadrant unit, as h and u → ∞
we reach Z1 the centre of the spiral eye with coordinate x = 1

2 , y = 1
2 .

The tangent to the spiral curve is

dy
dx

= tan
πu2

2

and this is zero when the phase

Δ(h) = πh2/λl = πu2/2 = mπ

where m is an integer so that u =
√
(2m) relates u, the distance measured along the spiral to m the

number of half period zones contributing to the disturbance at P. The total intensity at P due to all the
half period zones above the straight edge is given by the square of the length of the ‘chord’ OZ1. This is
the intensity at the geometric shadow.

Suppose now that we keep P fixed as we slowly withdraw the screen vertically downwards from O.
This begins to reveal contributions to P from the lower part of the wavefront; that is, the part which
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contributes to the Cornu spiral in the third quadrant. The length u now includes not only the whole
of the upper spiral arm but an increasing part of the lower spiral until, when u has extended to Z2 the
‘chord’ Z1Z2 has its maximum value and this corresponds to the fringe of maximum intensity nearest
the straight edge. Further withdrawal of the screen lengthens u to the position Z3 which corresponds to
the first minimum of the fringe pattern and the convolutions of an increasing length u around the spiral
eye will produce further intensity oscillations of decreasing magnitude until, with the final removal of
the screen, u is now the total length of the spiral and the square of the ‘chord’ length Z1Z

′
1 gives the

undisturbed intensity of unit value. But Z1Z
′
1 = 2Z1O so that the undisturbed intensity (Z1Z

′
1)

2 is a
factor of four greater than (Z1O)2 the intensity at the geometric shadow.

The Fresnel Diffraction pattern from a slit may now be seen as that due to a fixed height h of the
wavefront equal to that of the slit width. This defines a fixed length u of the spiral between the end
points of which the ‘chord’ is drawn and its length measured and squared to give the intensity. At a given
distance from the slit the intensity at a point P in the diffraction pattern will correlate with the precise
location of the fixed length u along the spiral. At the centre of the pattern P is symmetric with respect
to the upper and lower edges of the slit and the fixed length u is centred about O (Figure 13.20). As P
moves across the pattern towards the geometric shadow the length u moves around the convolutions of
the spiral. In the geometric shadow this length is located entirely within the first or third quadrant of the
spiral and the magnitude of the ‘chord’ between its ends is less than OZ1. When the slit is wide enough
to produce the central minimum of the diffraction pattern in Figure 13.21 the length u is centred at O
with its ends at Z3 and Z4 in Figure 13.20.

–0.5

–0.5 0

u

Z3

Z1
ʹ

Z1

Z4

Z2

0.5

0.5

Figure 13.20 The slit width h defines a fixed length u of the spiral. The intensity at a point P in the diffraction
pattern is correlated with the precise location of u on the spiral. When P is at the centre of the pattern u is centred
on 0 and moves along the spiral as P moves towards the geometric shadow. Within the geometric shadow the
chord joining the ends of u is less than 0Z1.
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Slit width

Intensity

Figure 13.21 Fresnel diffraction pattern from a slit which is wide enough for the spiral length u to be centred
at 0 and to end on points Z3 and Z4 of Figure 13.20. This produces the intensity minimum at the centre of the
pattern.

N

Rn
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2 = (r0 + nλ/2)2

Figure 13.22 Fresnel diffraction from a circular aperture. The mean radius Rn(ON) defines the half period zone
with a phase lag of nπ at P with respect to the contribution from the central zone. The obliquity angle χ which
reduces the zone contribution at P increases with n.

13.12.2 Circular Aperture (Fresnel Diffraction)

In this case the half period zones become annuli of decreasing width. If Rn is the mean radius of the
half period zone whose phase lag is nπ with respect to the contribution from the central ring the path
difference in Figure 13.22 is given by

NP−OP = Δ = nλ/2
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Worked Example

So

R2
n = r2

n − r2
0 =

(
r0 + n

λ

2

)2

− r2
0 = nλr0 +

1
4

n2λ2

which for λ� r0 gives R2
n = nλr0. Note too that the area of the aperture enclosed by R2

n =
πR2

n = nπλr0 which shows that all Fresnel half period zones have the same area equal to πλr0. This
is a most important result.

For a circular aperture radius a the area πa2 = nπλr0 where n is the number of zones observed
at P = r0. Varying r0 changes the value of n. If P moves towards the screen r0 is reduced and n the
number of zones increases. This reduces the value of Rn of a given zone as more zones crowd into
observation from the pattern circumference. If P retreats from the screen, r0 increases, n decreases and
zones increase in size from the centre to the circumference until only the central spot remains after which
there is darkness. Note that if r0 gives a central bright spot then r0 + λ/2 will give a central dark spot.

Each zone contributes equally to the disturbance at P except for a factor arising from the rigorous
Kirchhoff theory which, until now, we have been able to ignore. This is the so-called obliquity factor cosχ
where χ is shown in the figure. This factor is negligible for small values of n but its effect is to reduce
a zone contribution as n increases. A large circular aperture with many zones produces, in the limit, an
undisturbed normal intensity on the axis and from Figure 13.24 where we show the magnitude and phase
from successive half zones we see that the sum of these vectors which represents the amplitude produced
by an undisturbed wave is only half of that from the innermost zone.

The spiral in Figure 13.23 explains the origin of the half period zones in the Fresnel diffraction pattern
from a circular aperture Figure 13.22. The total contribution from an annular half zone is a semicircle

3

2
1

Figure 13.23 The spiral phasor diagram for a spherical wavefront. Diameter 1 to 2 is the amplitude of the first
half zone. Diameter 2 to 3 is the amplitude of the second amplitude half zone.
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1 3

2

Figure 13.24 The vector contributions from successive zones in the circular aperture. The amplitude produced
by an undisturbed wave is seen to be only half of that from the central zone. Removing the contributions from
alternate zones leaves the remainder in phase and produces a very high intensity. This is the principle of the zone
plate of Figure 13.25.

resulting from a number of small wave amplitude vectors each with a phase difference with respect
to its predecessor. The total phase difference increases from 0 to π between the first and last vectors
on the semicircle (representing a wavelength difference of λ/2). The diameter of the semicircle is the
amplitude of a given half zone with amplitudes decreasing with distance from the central zone due
to the obliquity factor and the 1/r term in the amplitude of a spherical wave which decreases with r,
the distance travelled. Each semicircle with its vector diameter is known as a phasor. A tight spiral
results in the amplitude of a bright ring being almost cancelled by that of the following anti-phase
dark ring (Figure 13.24). The amplitude of the central bright spot in Figure 13.24 is the diameter of
the semicircular circumference traced by the clockwise rotation of the outer end of the arrow between
positions 1 and 2. The amplitude is twice that of the unobstructed amplitude of the incident wave at the
right of Figure 13.24. Continued rotation between positions 2 and 3 produces the slightly reduced ampli-
tude anti-phase half zone of the first dark ring. The numbers 1, 2, 3 appear in Figure 13.23 and 13.24 for
correlation.

13.13 Zone Plate

It is evident that if alternate zones transmit no light then the contributions from the remaining zones
would all be in phase and combine to produce a high intensity at P similar to the focusing effect of a lens.
Such circular ‘zone plates’ are made by blacking out the appropriate areas of a glass slide, Figure 13.25.
A further refinement increases the intensity still more. If the alternate zone areas are not blacked out but
become areas where the optical thickness of the glass is reduced, via etching, by λ/2 the light transmitted
through these zones is advanced in phase by π rad so that the contributions from all the zones are now
in phase.
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Figure 13.25 Zone plate produced by removing alternate half zones from a circular aperture to leave the
remaining contributions in phase.

θθ

k

a

kʹ

Figure 13.26 Elastic Bragg reflection occurs when electron waves are scattered by atoms in planes separated by
a distance a. Principal maxima are formed when 2a sin θ = nλ.

13.14 Electron Diffraction and Brillouin Zones

Atoms in crystals are arranged in regular three-dimensional patterns of unit cells, the simplest of which
is the cubic cell where atoms are located at each corner of a cube. The resulting atomic planes diffract X
rays (electromagnetic waves) with wavelengths λ ∼ 3× 10−10 m, a process known as Bragg scattering.
Diffracted waves superpose to give maxima when 2a sin θ = nλ (Figure 13.26; see also Figure 12.5).
Electrons with energy of ≈ 16 eV have a de Broglie wavelength λ ≈ 3 × 10−10 m and display the
same phenomenon. Internal scattering within the crystal occurs because many charged valence electrons
have left atomic sites occupied by positively charged ions with which the negative electrons interact as
they move under the influence of external applied voltages. Only ‘free’ electrons escape such interac-
tions. When θ = π/2 in Figure 13.26 the scattering takes place along a linear lattice and when the
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Figure 13.27 When θ = π/2 in Figure 13.26 Bragg scattering by electron–ion interactions gives principal maxima
when electron waves are reflected from ions separated by multiples of a. The condition 2a = nλ defines the
Brillouin zone boundaries for n = 1, 2, 3, etc.

B4
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B1

V2

V1

V3

3π 2π– –
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π
a

0
k

Figure 13.28 Allowed electron energies versus k. The dotted parabola defines the free electron energy E =
�

2k2/2m and the allowed energy bands are the Brillouin zones Bi. V1, V2, V3 are the energy gaps between the
zones. The cosine curves joining the zone boundaries are justified by Figure 6.6, i.e. all relevant information is
contained in the region −π

a ≤ k ≤ π
a .

interaction is strong enough the waves are totally reflected. This can result in phase differences of
±nλ = ±2nπ/k = 2a, i.e. k = ±nπ/a (Figure 13.27). At exact values of k there is a gap between
the allowed bands of energy in which the electrons move. These bands of energy are called Brillouin
zones (see Figure 13.28 and Figure 5.15). If an electron gains sufficient energy from an applied volt-
age the gap between two bands may be small enough for the electron to jump across the gap into the
higher energy band. This defines a conductor. If the energy gap is too great for this to happen for even
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the highest applied voltages the material is an insulator. Figure 13.28 shows the Brillouin zones and the
dotted parabola defining the free electron energy E = p2/2m = �

2k2/2m where � = h/2π.

Problem 13.1. (a) Atomic Hz in the atmosphere radiates a wavelength λ = 21 cm. An English land-
based telescope has a diameter of 76 metres. What is its diffraction-limited angular resolution in degrees?
(b) The Hubble space telescope has a diameter of 2.4 m. Determine its diffraction limited angular
resolution at a wavelength of 550 nm.

Problem 13.2. Monochromatic light is normally incident on a single slit, and the intensity of the
diffracted light at an angle θ is represented in magnitude and direction by a vector I, the tip of which traces
a polar diagram. Sketch several polar diagrams to show that as the ratio of slit width to the wavelength
gradually increases the polar diagram becomes concentrated along the direction θ = 0.

Problem 13.3. The condition for the maxima of the intensity of light of wavelength λ diffracted by a
single slit of width d is given by α = tanα, where α = πd sin θ/λ. The approximate values of α which
satisfy this equation are α = 0,+3π/2,+5π/2, etc. Writing α = 3π/2 − δ, 5π/2 − δ, etc. where δ is
small, show that the real solutions for α are α = 0, ±1.43π,±2.459π,±3.471π, etc.

Problem 13.4. Prove that the intensity of the secondary maximum for a grating of three slits is 1
9 of that

of the principal maximum if only interference effects are considered.

Problem 13.5. A diffraction grating has N slits and a grating space f . If β = πf sin θ/λ, where θ is
the angle of diffraction, calculate the phase change dβ required to move the diffracted light from the
principal maximum to the first minimum to show that the half width of the spectral line produced by
the grating is given by dθ = (nN cot θ)−1, where n is the spectral order. (For N = 14, 000, n = 1 and
θ = 19o, dθ ≈ 5s of arc.)

Problem 13.6. (a) Dispersion is the separation of spectral lines of different wavelengths by a diffraction
grating and increases with the spectral order n. Show that the dispersion of the lines when projected by
a lens of focal length F on a screen is given by

dl
dλ

= F
dθ

dλ
=

nF
f

for a diffraction angle θ and the nth order, where l is the linear spacing on the screen and f is the grating
space.
(b) Show that the change in linear separation per unit increase in spectral order for two wavelengths
λ = 5 × 10−7m and λ2 = 5.2 × 10−7m in a system where F = 2m and f = 2 × 10−6m is 2 × 10−2m.

Problem 13.7. (a) A sodium doublet consists of two wavelength λ1 = 5.890 × 10−7m and λ2 =
5.896 × 10−7m. Show that the minimum number of lines a grating must have to resolve this doublet in
the third spectral order is ≈ 328.
(b) A red spectral line of wavelength λ = 6.5×10−7m is observed to be a close doublet. If the two lines
are just resolved in the third spectral order by a grating of 9× 104 lines show that the doublet separation
is 2.4 × 10−12m.

Problem 13.8. Optical instruments have circular apertures, so that the Rayleigh criterion for resolution
is given sin θ = 1.22λ/a, where a is the diameter of the aperture.
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B

A
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0
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s exaggerated. Consider OB II Oʹ B
OA II Oʹ A

Iʹ

I

Two points O and O′ of a specimen in the object plane of a microscope are separated by a distance s.
The angle subtended by each at the objective aperture is 2i and their images I and I′ are just resolved.
By considering the path difference between O′A and O′B show that the separation s = 1.22λ/2 sin i.

Problem 13.9. A screen with a small hole of 5 mm diameter is illuminated by a plane wave with a
wavelength λ = 5 × 10−7 m. The first zone of diffraction pattern is a bright spot. Determine from
Figures 13.23 and 13.24 the location of the darkest point of the pattern and calculate the farthest distance
it can have from the screen.

Problem 13.10. Seen from an axial point P a circular aperture uncovers the first one and a half Fresnel
zones of a plane monochromatic wave. Locate this position of Figures 13.23 and 13.24 and calculate the
intensity at P in terms of the unobstructed value I0. What is the phase difference between the first and
last wave vectors in this diffraction pattern?
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14
Non-linear Oscillations

The oscillations discussed in this book so far have all been restricted in amplitude to those which satisfy
the equation of motion where the restoring force is a linear function of the displacement. This restriction
was emphasized in Chapter 1 and from time to time its limiting influence has required further discussion.
We now discuss some of the consequences when this restriction is lifted.

We begin with simple examples in mechanical and solid state oscillators. Finally we discuss the
development of shock waves from high amplitude sound waves.

14.1 Free Vibrations of an Anharmonic Oscillator – Large Amplitude Motion of a
Simple Pendulum

In Figure 1.1 the equation of motion of the simple pendulum was written in terms of its angular
displacement as

d2θ

dt2
+ ω2

0θ = 0

where ω2
0 = g/l. Here, an approximation was made by writing θ for sin θ; the equation is valid for

oscillation amplitudes within this limit. When θ≥ 7◦ however, this validity is lost and we must consider
the more complicated equation

d2θ

dt2
+ ω2

0 sin θ = 0

Multiplying this equation by 2dθ/dt and integrating with respect to t gives (dθ/dt)2 = 2ω2
0 cos θ + A,

where A is the constant of integration. The velocity dθ/dt is zero at the maximum angular displacement
θ = θ0, giving A = −2ω2

0 cos θ0 so that

Introduction to Vibrations and Waves, First Edition. H. J. Pain and Patricia Rankin.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion website: http://booksupport.wiley.com
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dθ

dt
= ω0[2(cos θ − cos θ0)]

1/2

or, upon integrating,

ω0t =
∫

dθ

{2[cos θ − cos θ0]}1/2

If θ = 0 at time t = 0 and T is the new period of oscillation, then θ = θ0 at t = T/4, and using
half-angles we obtain

ω0
T
4
=

∫ θ0

0

dθ

2[sin2 θ0/2 − sin2 θ/2]1/2

If we now express θ as a fraction of θ0 by writing sin θ/2 = sin(θ0/2) sinφ, where, of course, −1 <
sinφ < 1, we have

1
2
(cos θ/2)δθ = (sin θ0/2) cosφδφ

giving

π

2
T
T0

=

∫ π/2

0

dφ

[1 − (sin2 θ0/2) sin2 φ]1/2

where T0 = 2π/ω0.
Expansion and integration gives

T = T0(1 + 1
4 sin

2 θ0/2 + 9
64 sin

4 θ0/2 + · · ·

or approximately

T = T0(1 + 1
4 sin

2 θ0/2)

14.2 Forced Oscillations – Non-linear Restoring Force

When an oscillating force is driving an undamped oscillator the equation of motion for such a system is
given by

mẍ + s(x) = F0 cosωt

where s(x) is a non-linear function of x, which may be expressed in polynomial form:

s(x) = s1x + s2x2 + s3x3 . . .

where the coefficients are constant. In many practical examples s(x) = s1x+ s3x3, where the cubic term
ensures that the restoring force s(x) has the same value for positive and negative displacements, so that
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the vibrations are symmetric about x = 0. When s1 and s3 are both positive the restoring force for a given
displacement is greater than in the linear case and, if supplied by a spring, this case defines the spring
as ‘hard’. If s3 is negative the restoring force is less than in the linear case and the spring is ‘soft’. In
Figure 14.1 the variation of restoring force is shown with displacement for s3 zero (linear), s3 positive
(hard) and s3 negative (soft). We see therefore that the large amplitude vibrations of the pendulum of the
previous section are soft-spring controlled because

sin θ ≈ θ − 1
3
θ3

Figure 14.2 shows a mass m attached to points D and D′, a vertical distance 2a apart, by two light elastic
strings of constant stiffness s and subjected to a horizontal driving force F0 cosωt. At zero displacement
the tension in the strings is T0 and at a displacement x (not limited in value) the tension is T = T0+s(L−a)
where L is the stretched string length.

Displacement

R
es

to
rin

g 
fo

rc
e b

b

a

a

c

c

Figure 14.1 Oscillator displacement versus restoring force for (a) linear restoring force, (b) non-linear ‘hard’
spring, and (c) non-linear ‘soft’ spring.

L

2a

D

Dʹ

L

F0 cos ωt X

Figure 14.2 A mass m supported by elastic strings between two points D and D′ vertically separated by a distance
2a and subjected to a lateral force F0 cosωt.
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The equation of motion (neglecting gravity) is

mẍ = −2T sin θ + F0 cosωt

= −2[T0 + s(L − a)]
x
L
+ F0 cosωt

Inserting the value

L = a

[
1 +

( x
a

)2
]1/2

and expanding this expression in powers of x/a, we obtain by neglecting terms smaller than (x/a)3

mẍ = −2T0

a
x − (sa − T0)

a3
x3 + F0 cosωt

which we may write

ẍ + s1x + s3x3 =
F0

m
cosωt

where

s1 =
2T0

ma
and s3 =

sa − T0

ma3

If s3 is small we assume (as a first approximation) the solution x1 = A cosωt, which yields from the
equation of motion

ẍ1 = −s1A cosωt − s3A3 cos3 ωt +
F0

m
cosωt

Since cos3 ωt = 3
4 cosωt + 1

4 cos 3ωt, this becomes

ẍ1 = −(s1A + 3
4 s3A3 − F0/m) cosωt − 1

4 s3 A3 cos 3ωt

Integrating twice, where the constants become zero from initial boundary conditions, gives as a second
approximation to the equation

ẍ + s1x + s3x3 =
F0

m
cosωt

the solution

x2 =
1
ω2

(
s1A +

3
4

s3 A3 − F0

m

)
cosωt +

s3A3

36ω2
cos 3ωt

Thus, for s3 small we have a value of ω appropriate to a given amplitude A, and we can plot a graph
of amplitude versus driving frequency. Note that we have a third harmonic. We see that for a system
with a non-linear restoring force resonance does not exist in the same way as in the linear case. In the



�

�

“Pain-Driver” — 2015/1/6 — 20:55 — page 321 — #5
�

�

�

�

�

�

Non-linear Oscillations 321

(a) (b) (c)

Shock
jumpA

m
pl

itu
de

ω

Figure 14.3 Response curves of amplitude versus frequency for oscillators having (a) a ‘hard’ spring restoring
force, and (b) a ‘soft’ spring restoring force. In the extreme case (c) the tilt of the maximum is sufficient to allow
multi-valued amplitudes at a given frequency and ‘shock jumps’ may occur. (See Figure 14.5 for comparable
behaviour in a high amplitude sound wave.).

example above, even when no damping is present, the amplitude will not increase without limit for a
driving force of a given frequency, for if ω is the natural frequency at low amplitude it is no longer the
natural frequency at high amplitude. For s3 positive (hard spring) the natural frequency increases with
increasing amplitude and the amplitude versus frequency curve has a tilted maximum (Figure 14.3a). For
a soft spring, s3 is negative and the behaviour follows Figure 14.3b. It is possible for the tilt to become
so pronounced (Figure 14.3c) that the amplitude is not single valued for a given ω and shock jumps in
amplitude may occur at a given frequency (see the later discussion on the development of a shock front
in a high amplitude acoustic wave).

14.3 Thermal Expansion of a Crystal

Chapter 1 showed that the curve of potential energy versus displacement for a harmonic oscillator was
parabolic. Small departures from this curve are consistent with unharmonic oscillations. Consider the
potential curve for a pair of neighbouring ions of opposite charge ±e in a crystal lattice such as that
of KCl. This is shown in Figure 14.4 where r is the separation of the ions and the mutual potential
energy is given by V(r) = −e2/4πε0r + B/r9 where B is a positive constant. This curve is no longer
parabolic. The first term of V(r) is the energy due to coulomb attraction and the second is that of a
repulsive force. The value of B can be found in terms of the ion equilibrium separation r0 because at r0,
(∂V/∂r)r0 = 0 = e2/4πε0r2

0 − 9B/r10
0 so B = e2r8

0/36πε0. X-ray diffraction from such crystals gives
r0 = 3.15 × 10−10 m for KCl so B may be found numerically.

To consider small displacements from the equilibrium value r0 let us expand V(r) about r = r0 in a
Taylor’s series to give

V(r) = V(r0) + x

(
∂V
∂r

)
r0

+
x2

2!

(
∂2V
∂r2

)
r0

+
x3

3!

(
∂3V
∂r3

)
r0

where x = r − r0. At equilibrium since (∂V/∂r)r0 = 0 we may write

V(r)− V(r0) = V(x) =
x2

2!

(
∂2V
∂r2

)
r0

+
x3

3!

(
∂3V
∂r3

)
r0
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Repulsive
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Attractive
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Figure 14.4 Non-parabolic curve of mutual potential energy between oppositely charged ions in the lattice of an
ionic crystal (NaCl or KCl). The combination of repulsive and attractive forces yields an equilibrium separation r0.
Very small energy increments give harmonic motion about r0 but oscillations at higher energies are anharmonic,
leading to thermal expansion of the crystal. The time averaged equilibrium position r between r1 and r2 is located
slightly to the right of r0.

where the term (∂2V/∂r2)r0 is the stiffness (force/distance) of a harmonically oscillationg chemical bond
between the ions. For very small disturbances the bottom of the potential energy curve is parabolic and the
ion pair oscillate symmetrically about r = r0. A further increase in the ion pair energy involves the second
term x3/3!(∂3V/∂r3)r0 and oscillations are no longer symmetric about r0 because |r2 − r0| > |r1 − r0|
and the time average r, the equilibrium position is > r0. If all ion pairs acquire this amount of energy,
for example by heating, the crystal expands. We may consider the force between the two ions as

F = −∂V
∂x

= −x

(
∂2V
∂r2

)
r0

− x2

2

(
∂3V
∂r3

)
r0

= −sx − x2

2

(
∂s
∂r

)
r0

where (∂2V/∂r2)r0 = s and (∂3V/∂r3)r0 is its derivative. Now, for a weak spring, r > r0, (∂s/∂r)r0 is
negative in the region r0 to r to reduce the total force to zero at r. We shall show shortly that (∂s/∂r)r0 =
C(−104/r4

0) where C is a constant. Writing x = (r − r0) we have F = (−sx − 1
2 (

∂s
∂r )r0 x2) = 0 because

at x the oscillation has reached r the equilibrium position where every oscillating restoring force is zero
as it reverses direction by 180◦. We then have, from the force bracket

sx = −1
2

(
∂s
∂r

)
r0

x2

or

x = −1
2

(
∂s
∂r

)
r0

x2/s

which we now evaluate.
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We can now rewrite the potential energy equation using B = e2r8
0/36πε0 as

V(r) = C

(
1
9

r8
0

r9
− 1

r

)

where C is a constant = e2/4πε0.

∂V
∂r

= C

(
− r8

0

r10
+

1
r2

)
r0

= 0 as we expect.

∂2V
∂r2

= C

(
10r8

0

r11
− 2

r3

)
r0

= C
8
r3

0

= s

∂3V
∂r3

= C

(
−110r8

0

r12
+

6
r4

)
r0

= C
−104

r4
0

=

(
∂s
∂r

)
r0

a negative quantity

∴
(
∂s
∂r

)
r0

/s = −13
r0

and x = −1
2

(
∂s
∂r

)
r0

x2/s = +
13
2r0

x2

Now the thermal energy associated with the harmonic oscillator potential energy maximum 1
2 sx2 = kT

where k is Boltzmann’s constant and T is the temperature. So with x = 13kT/r0s and s = C · 8/r3
0 =

2e2/πε0r3
0 we have x = 13πε0kTr2

0/2e2. The value of r0 = 3.15 × 10−10 m gives a thermal expansion

d x
dT

=
13πε0kr2

0

2e2
= 9.7 × 10−6 nm ·K−1

which is about 0.5 of the experimental value.
This approach considers only one pair of ions and disregards the effect of surrounding molecules in

the crystal lattice.

14.4 Non-linear Acoustic Waves and Shocks

The linearity of the longitudinal acoustic waves discussed in Chapter 7 required the assumption of a
constant bulk modulus

B = − dP
dV/V

If the amplitude of the sound wave is too large this assumption is no longer valid and the wave propagation
assumes a new form. A given mass of gas undergoing an adiabatic change obeys the relation

P
P0

=

(
V0

V

)γ

=

[
V0

V0(1 + δ)

]γ
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in the notation of Chapter 7, so that

∂P
∂x

=
∂p
∂x

= −γP0(1 + δ)−(γ+1) ∂
2η

∂x2

since δ = ∂η/∂x.
Since (1 + δ)(1 + s) = 1, we may write

∂p
∂x

= −γP0(1 + s)γ+1 ∂
2η

∂x2

and from Newton’s second law we have

∂p
∂x

= −ρ0
∂2η

∂t2

so that

∂2η

∂t2
= c2

0(1 + s)γ+1 ∂
2η

∂x2
, where c2

0 =
γP0

ρ0

Physically this implies that the local velocity of sound, c0(1+s)(γ+1)/2, depends upon the condensation
s, so that in a finite amplitude sound wave regions of higher density and pressure will have a greater sound
velocity, and local disturbances in these parts of the wave will overtake those where the values of density,
pressure and temperature are lower.

A single sine wave of high amplitude can be formed by a close-fitting piston in a tube which is pushed
forward rapidly and then returned to its original position. Figure 14.5a shows the original shape of such
a wave and Figure 14.5b shows the distortion which follows as it propagates down the tube. If the dis-
tortion continued the waveform would eventually appear as in Figure 14.5c, where analytical solutions
for pressure, density and temperature would be multi-valued, as in the case of the non-linear oscillator
of Figure 14.5c. Before this situation is reached, however, the waveform stabilizes into that of Figure
14.5d, where at the vertical ‘shock front’ the rapid changes of particle density, velocity and tempera-
ture produce the dissipating processes of diffusion, viscosity and thermal conductivity. The velocity of
this ‘shock front’ is always greater than the velocity of sound in the gas into which it is moving, and
across the ‘shock front’ there is always an increase in entropy. The competing effects of dissipation and
non-linearity produce a stable front as long as the wave retains sufficient energy. The N-type wave of
Figure 14.5d occurs naturally in explosions (in spherical dimensions) where a blast is often followed by
a rarefaction.

Pressure

(a) (b) (c) (d)

Figure 14.5 The local sound velocity in a high amplitude acoustic wave (a) is pressure and density dependent.
The wave distorts with time (b) as the crest overtakes the lower density regions. The extreme situation of (c) is
prevented by entropy-producing mechanisms and the wave stabilizes to an N-type shock wave (d) with a sharp
leading edge.
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Worked Example

An explosion causes a high pressure sine wave in air shaped as in Figure 14.5a. The value of gamma in
air is 5/3, and the value of s in the wave is 12%. If the length of the wave is 200 m and the velocity of
sound in air is 330 m s−1, how long does the pulse take to assume the shape of Figure 14.5d?

Solution

Velocityofthepeakofthepulse= c0[1+ 1
2(γ+1)s] = c0(1+ 4

3 ·12%) = c0(1.16).Relativevelocityofpeak
withrespecttoleadingedgeofpulse= .16·330 = 52.8m s−1.Timetoovertake50m= 50/52.8= .985sec.

The growth of a shock front may also be seen as an extension of the Doppler effect section 7.9, where
the velocity of the moving source is now greater than that of the signal. In Figure 14.6a as an aircraft
moves from S to S′ in a time t the air around it is displaced and the disturbance moves away with the
local velocity of sound vS. The circles show the positions at time t of the sound wavefronts generated at
various points along the path of the aircraft but if the speed of the aircraft u is greater than the velocity of
sound vS regions of high density and pressure will develop, notably at the edges of the aircraft structure
and along the conical surface tangent to the successive wavefronts which are generated at a speed greater
than sound and which build up to a high amplitude to form a shock. The cone, whose axis is the aircraft
path, has half angle α where

sinα =
vS
u

It is known as the ‘Mach Cone’ and when it reaches the ground a ‘supersonic bang’ is heard.

(a)
P

P

A B

r0 r1

u∆t

(b)

S Sʹ Sʹʹ Sʹʹʹ
θ

θ

α

Figure 14.6 (a) The circles are the wavefronts generated at points S along the path of the aircraft, velocity
u > vS the velocity of sound. Wavefronts superpose on the surface of the Mach Cone (typical point P) of half
angle α = sin−1 vS/u to form a shock front. (b) At point P sound waves arrive simultaneously from positions A
and B along the aircraft path when (u/vS) cos θ = 1. (θ + α = 90◦).
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The growth of the shock at the surface of the cone may be seen by considering the sound waves in
Figure 14.6b generated at points A (time tA) and B (time tB) along the path of the aircraft, which travels
the distance AB = x = uΔt in the time interval Δt = tB − tA. The sound waves from A will travel the
distance r0 to reach the point P at a time

t0 = tA +
r0

vS

Those from B will travel the distance r1 to P to arrive at a time

t1 = tB +
r1

vS

If x is small relative to r0 and r1, we see that

r1 − r0 ≈ x cos θ = uΔt cos θ

so the time interval

t1 − t0 = tB − tA +
(r1 − r0)

vS

= Δt − uΔt cos θ
vS

= Δt

(
1 − u cos θ

vS

)

For the aircraft speed u < vS, t1 − t0 is always positive and the sound waves arrive at P in the order in
which they were generated.

For u > vS this time sequence depends on θ and when

u
vS

cos θ = 1

t1 = t0 and the sound waves arrive simultaneously at P to build up a shock.
Now the angles θ and α are complementary so the condition

cos θ =
vS
u

defines

sinα =
vS
u

so that all points P lie on the surface of the Mach Cone.
A similar situation may arise when a charged particle q emitting electromagnetic waves moves in a

medium of refractive index greater than unity with a velocity vq which may be greater than that of the
phase velocity v of the electromagnetic waves in the medium (v < c). A Mach Cone for electromagnetic
waves is formed with a half angle α where

sinα =
v
vq
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And the resulting ‘shock wave’ is called Cerenkov radiation. Measuring the effective direction of
propagation of the Cerenkov radiation is one way of finding the velocity of the charged particle.

14.5 Mach Number

A significant parameter in shock wave theory is the Mach number. It is a local parameter defined as the
ratio of the flow velocity to the local velocity of sound. The Mach number of the shock front is therefore
Ms = u1/c1, where u1 is the velocity of the shock front propagating into a gas whose velocity of sound
is c1.

The Mach number of the gas flow behind the shock front is defined as Mf = u/c2, where u is the flow
velocity of the gas behind the shock front (u< u1) and c2 is the local velocity of sound behind the shock
front. There is always an increase of temperature across the shock front, so that c2 > c1 and Ms>Mf .
The physical significance of the Mach number is seen by writing M2 = u2/c2, which indicates the ratio
of the kinetic flow energy, 1

2 u2 mol−1, to the thermal energy, c2 = γRT mol−1. The higher the proportion
of the total gas energy to be found as kinetic energy of flow the greater is the Mach number.

Problem 14.1. If the period of a pendulum with large amplitude oscillations is given by

T = T0

(
1 +

1
4
sin2 θ0

2

)

where T0 is the period for small amplitude oscillations and θ0 is the oscillation amplitude, show that for
θ0 not exceeding 30o, T and T0 differ by only 2% and for θ0 = 90◦ the difference is 12%.

Problem 14.2. The equation of motion of a free undamped non-linear oscillator is given by

mẍ = −f (x)

Show that for an amplitude x0 its period

τ0 = 4

√
m
2

∫ x0

0

dx

[F(x0)− F(x)]1/2
, where F(x0) =

∫ x0

0
f (x)dx

Problem 14.3. The equation of motion of a forced undamped non-linear oscillator of unit mass is
given by

ẍ = s(x) = F0 cosωt

Writing s(x) = s1x + s3x3, where s1 and s3 are constant, choose the variable ωt = φ, and for s3 � s1

assume a solution

x =
∞∑

n=1

(
an cos

n
3
φ + bn sin

n
3
φ
)

to show that all the sine terms and the even-numbered cosine terms are zero, leaving the fundamental
frequency term and its third harmonic as the significant terms in the solution.
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328 Introduction to Vibrations and Waves

Problem 14.4. If the mutual interionic potential in a crystal is given by

V = −V0

[
2
(r0

r

)6
−

(r0

r

)12
]

where r0 is the equilibrium value of the ion separation r, show by expanding V about V0 that the ions
have small harmonic oscillations at a frequency given by ω2 ≈ 72 V0/mr2

0, where m is the reduced mass.

Problem 14.5. Repeating the worked example at the end of section 14.4 with an s value of 9%, approx-
imately how much longer does it take to form the Figure 14.5d pulse? In practice, how would the N-type
shock wave change its shape and why?
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Appendix 1
The Binomial Theorem

For our purposes we may express the Binomial Theorem as (1 + x)n where n is a positive integer or
fraction and −1 < x < 1.

Thus n = 2 gives (1+x)2 = 1+2x+x2, n = 3 gives (1+x)3 = 1+3x+3x2 +x3 and more generally

(1 + x)n = 1 + nx +
n(n − 1)

2!
x2 +

(n − 1)(n − 2)(n − 3)
3!

x3 · · ·

written

(1 + x)n = 1 +nC1x +nC2x2 +nC3x3 + · · ·+n Crx
r + · · ·+ xn

The coefficients nCr are called combinations and specify how many arrangements may be made by
selecting the number r from n dissimilar objects when only one particular order is allowed. From the
four different letters, A, B, C, D, we can form six combinations of r = 2, that is, AB, AC, AD, BC, BD,
CD. Other arrangements, called permutations allow, in addition, any order to be reversed e.g. BA, CA,
DA etc., so there are 12 permutations in all. A combination is the quotient of two permutations of which
the numerator is written nPr and the denominator is rPr. In forming nPr we have n choices of filling the
first place and (n−1) choices from which to fill the second place, that is, n(n−1) choices to fill the first
two places. We proceed in this way to fill the r places in n(n − 1)(n − 2) · · · (n − r + 1) permutations.
We now find the number of permutations of the r objects arranged among themselves which from the
reasoning above is rPr = r(r − 1)(r − 2) · · · 3 · 2 · 1, written r! (called r factorial).

Thus

nPr
rPr

=n Cr =
n(n − 1)(n − 2) · · · (n − r + 1)

r!

as in (1 + x)n above.
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330 Appendix 1 The Binomial Theorem

If the series is truncated before the last term the order of accuracy is that of the first term to be
truncated, e.g.

(1 + x)1/2 = 1 +
1
2

x − 1
8

x2 + O(x3)

where O(x3) is defined as to the order of x3. This is often applied using n = 1/2 as the square root.
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Appendix 2
Taylor’s and the Exponential Series

Consider the function 1
1+x when −1 < x < 1. Actual division gives 1,

1
1 + x

= 1 − x
1 + x

= 1 − x +
x2

x + 1
= 1 − x + x2 − x3

1 + x

where 1, 1− x, 1− x+ x2 are successive approximations to 1
1+x with respective errors, − x

1+x , x2

1+x , − x3

1+x
which for −1 < x < 1 become progressively smaller. Note that for x = 0 the successive approximations
are all equal, from 1−x onwards they all have the same first derivative and from 1−x+x2 they all have the
same second derivative and so on. Consider the approximation to a function f (x+ x0) where x is close to
x0 and write it as a polynomial i.e. f (x+x0) ≈ a0+a1x+a2x2+· · ·+anxn choosing the a’s so that f (x+x0)
and its first n derivatives have the same values when x = 0 as the polynomial and its n derivatives. This
allows us to expect the polynomial to be a better approximation as the number of its terms increases.
These derivatives are successively a1 + 2a2x+ · · ·+ nanxn−1; 2a2 + 3 · 2a3x+ · · ·+ n(n− 1)anxn−2 etc.
So the values of the polynomial and its first n derivatives are, when x = 0, a0, a1, 2!·a2, 3!·a3, · · · , n!·an.
Equating these to f (x + x0) for x = 0 we have

f (x + x0) = f (x0) + xf ′(x0) +
x2

2!
f ′′(x0) + · · ·+ xn

n!
f n(x0)

which is known as Taylor’s series.
when x = 0 Taylor’s series reduces to

f (x) = f (0) + xf ′(0) +
x2

2!
f ′′(0) · · · xn

n1
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332 Appendix 2 Taylor’s and the Exponential Series

which is known as McLaurin’s series for f (x). Applying this to the exponential series ex where all
derivatives are ex, we have for x = 0,

f (0) = f ′(0) = f ′′(0) = · · · = f n(0) = e0 = 1

hence,

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!

which is valid for all x.
For x = 1, we have

e = 1 + 1 +
1
2!

+
1
3!

+ · · · = 2.718.
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Appendix 3
Superposition of a Large Number n of
Simple Harmonic Vibrations of Equal

Amplitude a and Equal Successive
Phase Difference δ

Figure A1 shows the addition of n vectors of equal length a, each representing a simple harmonic
vibration with a constant phase difference δ from its neighbour. Two general physical situations are
characterized by such a superposition. The first is met in Chapter 6 as a wave group problem where the
phase difference δ arises from a small frequency difference, δω, between consecutive components. The
second appears in Chapter 12 where the intensity of optical interference and diffraction patterns are con-
sidered. There, the superposed harmonic vibrations will have the same frequency but each component
will have a constant phase difference from its neighbour because of the extra distance it has travelled.

The figure displays the mathematical expression

R cos (ωt + α) = a cosωt + a cos(ωt + δ) + a cos(ωt + 2δ)

+ · · ·+ a cos(ωt + [n − 1]δ)

where R is the magnitude of the resultant and α is its phase difference with respect to the first component
a cosωt.

Geometrically we see that each length

a = 2r sin
δ

2

where r is the radius of the circle enclosing the (incomplete) polygon.
From the isosceles triangle OAC the magnitude of the resultant

R = 2r sin
nδ
2

= a
sin nδ/2
sin δ/2
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334 Appendix 3 Superposition of a Large Number

O

n δ

δ

a

a

a

a

a

r r

a

aA B

90° –
2

C

δ

δ

δ

δ

δ

δ

δ

α

r

a = 2r sin 2
δ

R =
 2

r s
in

2n 
δ

90° – 2
n δ

Figure A1 Vector superposition of a large number n of simple harmonic vibrations of equal amplitude a and
equal successive phase difference δ. The amplitude of the resultant R = 2r sin nδ

2 = a sin nδ/2
sin δ/2 and its phase with

respect to the first contribution is given by α = (n − 1)δ/2.

and its phase angle is seen to be

α = OÂB−OÂC

In the isosceles triangle OAC

ÔAC = 90o − nδ
2

and in the isosceles triangle OAB

OÂB = 90o − δ

2

so

α =

(
90o − δ

2

)
−

(
90o − nδ

2

)
= (n − 1)

δ

2

that is, half the phase difference between the first and the last contributions. Hence the resultant

R cos (ωt + α) = a
sin nδ/2
sin δ/2

cos

[
ωt + (n − 1)

δ

2

]

We shall obtain the same result later in this chapter as an example on the use of exponential notation.
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Appendix 3 Superposition of a Large Number 335

For the moment let us examine the behaviour of the magnitude of the resultant

R = a
sin nδ/2
sin δ/2

which is not constant but depends on the value of δ. When n is very large δ is very small and the polygon
becomes an arc of the circle centre O, of length na = A, with R as the chord. Then

α = (n − 1)
δ

2
≈ nδ

2

and

sin
δ

2
→ δ

2
≈ α

n

Hence, in this limit,

R = a
sin nδ/2
sin δ/2

= a
sinα

α/n
= na

sinα

α
=

A sinα

α

The behaviour of A sinα/α versus α is shown in Figure A2. The pattern is symmetric about the value
α = 0 and is zero whenever sinα = 0 except at α → 0 that is, when sinα/α → 1. When α = 0, δ = 0
and the resultant of the n vectors is the straight line of length A, Figure A2(b). As δ increases A becomes
the arc of a circle until at α = π/2 the first and last contributions are out of phase (2α = π) and the
arc A has become a semicircle of which the diameter is the resultant R, Figure A2(c). A further increase
in δ increases α and curls the constant length A into the circumference of a circle (α = π) with a zero
resultant, Figure A2(d). At α = 3π/2, Figure A2(e), the length A is now 3/2 times the circumference of
a circle whose diameter is the amplitude of the first minimum.

R =
R A

A=na 2A
π

απ
2

0

(d)

A A = 3
circumference2

(e)

3 2π
2

π π

A sinα
(b)

(c)
α

Figure A2 (a) Graph of A sinα/α versus α, showing the magnitude of the resultants for (b) α = 0, (c) α = π/2;
(d) α = π and (e) α = 3π/2.



�

�

“Pain-Driver” — 2014/12/30 — 13:30 — page 336 — #4
�

�

�

�

�

�



�

�

“Pain-Driver” — 2014/12/30 — 13:32 — page 337 — #1
�

�

�

�

�

�

Appendix 4
Superposition of n Equal SHM Vectors

of Length a with Random Phase φ

When the phase difference between the successive vectors of the last section may take random values
φ between zero and 2π (measured from the x axis) the vector superposition and resultant R may be
represented by Figure A3.
The components of R on the x and y axes are given by

Rx = a cosφ1 + a cosφ2 + a cosφ3 . . . a cosφn

= a
n∑

i=1

cosφi

and

Ry = a
n∑

i=1

sinφi

where

R2 = R2
x + R2

y

Now

R2
x = a2

(
n∑

i=1

cosφi

)2

= a2

⎡
⎢⎣

n∑
i=1

cos2 φi +
n∑

i=1
i �=j

cosφi

n∑
j=1

cosφj

⎤
⎥⎦
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338 Appendix 4 Superposition of n Equal SHM Vectors of Length a with Random Phase φ

y

R

x

Figure A3 The resultant R =
√

na of n vectors, each of length a, having random phase. This result is important
in optical incoherence and in energy loss from waves from random dissipation processes

The summation
∑

cosφ for all values

−1 ≤ cosφ ≤ +1 =

0∫
−π

cosφdφ = [sinφ]0−π = 0

Similarly,
∑

sinφ for all values

−1 ≤ sinφ ≤ +1 =

π/2∫
−π/2

sinφdφ = −[cosφ]
π/2
−π/2 = 0

The summation

n∑
i=1

cos2 φi = n cos2 φ

that is, the number of terms n times the average value cos2 φ which is the integrated value of cos2 φ over
the interval zero to 2π divided by the total interval 2π, or

cos2 φ =
1

2π

2π∫
0

cos2 φdφ =
1
2
= sin2 φ

So

R2
x = a2

n∑
i=1

cos2 φi = na2cos2 φi =
na2

2
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Appendix 4 Superposition of n Equal SHM Vectors of Length a with Random Phase φ 339

and

R2
y = a2

n∑
i=1

sin2 φi = na2sin2 φi =
na2

2

giving

R2 = R2
x + R2

y = na2

or

R =
√

na

Thus, the amplitude R of a system subjected to n equal simple harmonic motions of amplitude a with
random phases is only

√
na whereas, if the motions were all in phase R would equal na.

Such a result illustrates a very important principle of random behaviour.
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Appendix 5
Electromagnetic Wave Equations:

Vector Method

For a medium with permeability μ, permittivity ε, conductivity σ = 0 and charge density ρ = 0 pages,
section 9.2 give Maxwell’s equations as

curlE = ∇× E = − ∂

∂t
B = −μ

∂

∂t
H (1)

curlH = ∇× H =
∂

∂t
D = −ε

∂

∂t
E (2)

divD = ∇ · D = 0 (3)

divB = ∇ · B = 0 (4)

The vector relation, using (3), gives

∇×∇× E = ∇(∇ · E)−∇2E = −∇2E (5)

(1), (2) and (5) give

∇2E =
∂

∂t
(∇× B) = μ

∂2

∂t2
D = με

∂2

∂t2
E (6)

which, for E = Ex gives the wave equation

∂2

∂z2
Ex = με

∂2

∂t2
Ex
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342 Appendix 5 Electromagnetic Wave Equations: Vector Method

When σ �= 0 an ohmic current of density J = σE flows in addition to the displacement current and
equation (2) becomes

∇× H =
∂

∂t
D + J

which with equation (1), (5) and (6) gives

∇2E =
∂

∂t
(∇× B) = με

∂2

∂t2
E + μσ

∂

∂t
E

which for E = Ex gives

∂2

∂z2
Ex = με

∂2

∂t2
Ex + μσ

∂

∂t
Ex
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Appendix 6
Planck’s Radiation Law

(See also section 10.10.)

Proof that the average energy of an oscillator in Planck’s Radiation Law is given by

ε =
E
N

=
hν

ehν/kT − 1

where E is the total energy, N is the total number of oscillators, k is Boltzmann’s constant and h is
Planck’s constant.

Planck assumed that a large number N of oscillators had energies of 0, hν, 2hν, 3hν, . . ., nhν,
distributed according to Boltzmann’s Law.

Nn = N0 e
−nhν/kT = N0e

−nβε0

where we have replaced hν by ε0 and 1/kT by β for convenience in what follows. Note that the number
of oscillators Nn decreases exponentially with increasing n. The total number of oscillators:

N =

∞∑
n=0

Nn = N0(1 + e−βε0 + e−2βε0 + e−3βε0 + · · · ) = N0

∞∑
n=0

e−nβε0

which is a geometric progression with consecutive terms increasing by a factor e−βε0 to give a sum:

N0/(1 − e−βε0)

The total energy

E =
∞∑

n=0

En =

∞∑
n=0

Nnnε0 = N0

∞∑
n=0

nε0e
−nβε0 ,
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344 Appendix 6 Planck’s Radiation Law

so the average energy

ε = E/N =

∞∑
n=0

nε0e
−nβε0

∞∑
n=0

e−nβε0

after cancelling N0,
Examining this expression we see that the numerator is −∂/∂β of the denominator and writing the

denominator as y and using

− ∂

∂β
log y = −1

y
∂y
∂β

we have

ε =
E
N

= − ∂

∂β
log

∞∑
n=0

e−nβε0 = − ∂

∂β
log

1
1 − e−βε0

because
∑

e−nβε0 is a geometric progression. But

− ∂

∂β
log

1
1 − e−βε0

= +
∂

∂β
log(1 − e−βε0)

because

logN = − log
1
N

Using again

∂

∂β
log y =

1
y
∂y
∂β

with y = (1 − e−βε0) we have

ε =
E
N

=
ε0e

−βε0

1 − e−βε0

which, multiplying top and bottom by eβε0

=
ε0

eβε0 − 1
=

hν

ehν/kT − 1

as required.



�

�

“Pain-Driver” — 2014/12/30 — 13:35 — page 345 — #1
�

�

�

�

�

�

Appendix 7
Fraunhofer Diffraction from a

Rectangular Aperture

The simple approach in section 13.8 took contributions from only the strips along the central axes
x = y = 0. However, the amplitude at the focal point P in Figure 13.8 is the superposition from all points
(x, y) in the aperture with their appropriate phases. The vector k, normal to the diffracted wave front, has
direction cosines l with respect to the x axis and m with respect to the y axis. The vector r′ denotes a typ-
ical point (x, y) in the aperture and the phase difference between the contribution from this point and the
central point 0 is r′ 2π/λ (path difference) = 2π/λ(lx+my) where (lx+my) is the projection of r′ on k.

Writing 2πl/λ = kx and 2πm/λ = ky, we have the phase difference represented by the space part of
the incident electromagnetic wave e−i(kxx + kyy). Taking the small amplitudes of each point (x, y) as equal
to a constant h, the total amplitude in k space is the integration over the area of the aperture as

R(kx:ky) =
h

(2π)2

a/2∫
−a/2

b/2∫
−b/2

e−i(kxx + kyy)dxdy

Integration with respect to y evalues the contribution of a strip of the aperture along the y direction and
integrating with respect to x then adds the contribution of all these strips with their appropriate phase
relations. Moving from x, y space to kx, ky space involves a factor of 2π for each of the coordinates but
these, together with h, are incorporated at the end into the value of the maximum intensity I0 to which
all other intensity values in the aperture are relative.

The integral

b/2∫
−b/2

e−ikyydy =
1

−iky

(
e−ikyb/2 − e+ikyb/2

)

=
−2i
−iky

(sin kyb/2) = b
sinβ

β
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346 Appendix 7 Fraunhofer Diffraction from a Rectangular Aperture

where β = kyb/2 = πmb/λ, that is, half the phase difference between the contributions from y = ±b/2.
Similarly

a/2∫
−a/2

e−ikxxdx = a
sinα

α

where α = kxa/2 = πla/λ, that is, half the phase difference between the contributions from x = ±a/2.
Each term a sinα

α and b sin β
β is a diffraction amplitude and the relative intensities of the diffraction

distribution, that is, of the subsidiary maxima, depend on the square of their product

a2b2 sin
2 α

α2

sin2 β

β2

where ab is the area of the aperture.

We write the intensity at P as I = I0
sin2 α
α2

sin2 β
β2

where I0, the intensity maximum, incorporates the terms a, b, h and 1/2π. The relative values are numer-
ically equal to the products of any two terms from Table 13.1, which are repeated on the left-hand side
of Figure 13.9.
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Appendix 8
Reflection and Transmission

Coefficients for a Wave Meeting
a Boundary
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Index

Airy disc 301

bandwidth theorem 125
beats 16
Bessel function 300
Bragg reflection 312
Brillouin zones 312
bulk modulus 142

complex numbers 22
coupled oscillations 69

chemical bond 69
coupling of many oscillators 81
cut-off frequency 86
degrees of freedom 72
electrical coupling 77
normal coordinates 72
normal frequencies 72
normal modes 72
spring coupling, two pendulums 70
wave motion as limit of 87

damped simple harmonic motion 21
critical damping 29
damped electrical circuit 38
damped oscillations 31
heavy damping 28
logarithmic decrement 33
Q value measuring bandwidth of radiating atom

50
Q value measuring energy decay 35
relaxation time 25

de Broglie wavelength with Planck’s constant h
221

Debye theory of specific heats 225
diffusion 135

energy loss from waves 135
dispersion, anomalous 124

normal 124
Doppler effect 156

electromagnetic waves 183
anomalous dispersion 197
in a conductor 193
conductor or dielectric 198
criterion for e.m. wave propagation in a

conductor 195
in a dielectric 188
displacement current 185
Maxwell’s equations 186
Poynting vector 189
skin depth 196
wave equation in a conductor 194
wave equation in a dielectric 189

energy distribution
in a pulse with frequency 241
in a wave with distance 108, 147

Fabry–Pérot interferometer 262
Fermat’s principle 250
forced oscillations

electrical and mechanical identities 51
forced electrical oscillator 43
forced mechanical oscillator 50
Ohm’s law (vector form) 43
power supplied to oscillator 47
Q value as displacement amplification at

resonance 59
Q value as measure of power absorption

bandwidth 48
resonant frequencies of displacement, velocity

and acceleration 55
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forced oscillations (cont’d)
significance of two components of displacement

60
solutions for displacement, velocity and

acceleration 54–6
string as a forced oscillator 105
transients 65
transient and steady state terms 52
tuned LCR circuit 45
variation of magnitude and phase with frequency

for velocity and displacement 56–8
vibration insulation 63

Fourier series
energy in normal modes of a vibrating string

237
of a full wave three-phase rectifier 243
of a rectangular velocity pulse on a string 240
spectrum of a Fourier series 244
of a square wave 230
of a triangular function (plucked string) 236

Fraunhofer diffraction See optical diffraction
Fresnel diffraction See optical diffraction
Heisenberg’s uncertainty principle 123
Huygens’ waves 249

impedance
characteristic of an ideal transmission line 164
characteristic of a real transmission line 176
characteristic of a string 106
of a conductor to e.m. waves 200
of a dielectric to e.m. waves 191
of a forced electrical oscillator 44
of a forced mechanical oscillator 51
specific acoustic 148

intensity of sound waves 148
interference See optical waves
ionic crystal

infrared absorption by 134
thermal expansion of 321
transverse waves on 129

longitudinal waves
bulk modulus 142
earthquake 151
in a gas 141
Lamé’s elastic constants 150
Poisson’s ratio 150

in a solid 149
specific acoustic impedance 148
Young’s modulus 149

Michelson’s spectral interferometer 259
Michelson’s stellar interferometer 301
Newton’s rings 257
non-linear oscillations

acoustic waves 323
anharmonic oscillator 317
forced oscillations 318
free vibrations 319
Mach cone 326
Mach number 327
shock waves 324
simple pendulum 318
thermal expansion of a crystal 321

Ohm’s law (vector form) 43
optical diffraction

Fraunhofer diffraction 287
Bessel function 300
circular aperture 299
missing orders 293
rectangular aperture 297
resolving power and bandwidth 296
resolving power as Q value 297
resolving power of grating 294
single and double slits 288

Fresnel diffraction 303
Brillouin zones 312
circular aperture 309
cornu spiral 307
electron diffraction 312
phasor contributions 310
Rayleigh distance 304
straight edge and slit 305
wide slit 309
zone plate 311

optical waves
Airy disc 301
division of wavefront 272

broadside and end fire array 280, 283
dipole radiation 279
interference from N equal sources 280
interference from two equal sources 272
spatial coherence 276
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visibility of fringes 277
Young’s slits 274

Fermat’s principle 250
Huygens’ waves 249
interference

division of amplitude 254
Fabrey–Pérot interferometer 262
Fabrey–Pérot resolving power 264
finesse 266
free spectral range 267
fringes of constant inclination 255
fringes of constant thickness 256
laser cavity (finesse) 268
Michelson’s spectral interferometer 259
Newton’s rings 257
structure of spectral lines 261
thin film optical wave guide 271
total internal reflection 270

law of reflection 251
law of refraction 253
Michelson’s stellar interferometer 301

partial differentiation 87, 95
phase space 223
Planck’s constant h 223
Planck’s radiation law 224
Poisson’s ratio 150
polarization 98

Q value as measure of
bandwidth for a radiating atom 50
energy decay in damped simple harmonic

motion 35
power absorption by an oscillator 48
amplified displacement of an oscillator 59
resolving power and bandwidth of an optical

instrument 296–7

Rayleigh distance 304
resolution of spectral lines 294

reflection and transmission of waves at a
boundary

acoustic amplitude and intensity 152
amplitude and energy at a string discontinuity

113
e.m. waves normally incident on a conductor

205

e.m. waves normally incident at a dielectric
boundary 203

table of coefficients 348

simple harmonic motion
beats 16
displacement 4
electrical LC circuit 12
energy 8
equation of motion 2
examples 1
phase 6
superposition of two SHMs 14
velocity and acceleration 7

transmission lines
characteristic impedance of a real line 176
characteristic impedance 165
coaxial cables 164
quarter wave matching 178
real transmission line resistance and attenuation

172
reflection from end 167
standing waves 168
transmission line as a filter 169
voltage and current wave equations for ideal

line 163
transverse waves

bandwidth theorem 127
diffusion and energy loss 135
diffusion equation 135
dispersion (normal and anomalous) 123
distribution of wave energy along a string 107
e.m. absorption in a crystal 134
energy in a normal mode of oscillation 116
energy loss in a transmission line 137
group of many components 125
group velocity 123
Heisenberg’s uncertainty principle 128
impedance of string as a medium 105
matching impedances 113
partial differentiation 97
particle and phase velocities 99
rate of energy flow along a string 107
reflection and transmission of waves at a

discontinuity 108
significance of two currents 138
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transverse waves (cont’d)
standing wave ratio 116
standing waves on a string of fixed length 113
string as a forced oscillator 105
wave equation plus diffusion equation 136
wave equation 99
wave groups 121
waves in a periodic structure 131
waves on a string 98

water waves 154
waves in more than one dimension

de Broglie wavelength and Planck’s constant h
223

Debye theory of specific heats 225

frequency distribution from a hot body 223
normal modes and method of separation of

variables 216
normal modes in three dimensions 221
normal modes on a rectangular membrane 219
phase space 223
Planck’s radiation law 224
plane wave in two and three dimensions 209
three-dimensional case 218
two-dimensional case 217
ultraviolet catastrophe 224
wave equation in two dimensions 210
wave guides 212

Young’s modulus 149
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