

Diploma en Geomecánica Aplicada al Diseño Minero

9ª. Versión

2024-2025

Módulo 4: Geomecánica en Minería a Cielo Abierto

BHP

Analisis de estabilidad

Rigo Rimmelin

BSc (Mining Eng), MSc (Geotech Eng), FAusIMM

02 Octubre 2024

Auspiciador

Table of contents

- Calibration of models
- Interramp and global stability analysis (2D analysis)
- Interramp and global stability analysis (3D analysis)
- Additional assessments
- Mine closure considerations
- Risk management

FACULTAD DE CIENCIAS FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

Introduction

Stability analysis

Compliance with a stability acceptance criteria

- Factor of safety
- Probability of failure
- Size of failure

Scale of analysis

- Bench configuration
- Interramp slope
- Global slope

Techniques

- Limit equilibrium
- Numerical modelling

Outcome

• Final design -> slope geometry

Analisis de estabilidad

Introduction

- Ground support (interaction with mine infrastructure)
- · Operational controls (buttress, runout control, vibration control, etc)
- Rockmass improvement (grout injection)
- Post closure conditions

Calibration of geotechnical models

Models vs reality (rockmass classification)

Calibration of geotechnical models

Model vs reality (structural condition)

Calibration of properties

Backanalysis

			Análisis Retrospectivo			
Geon	netría de <mark>l</mark> Ta	alud	Dominio 2 - Sector PL1			
	h _b (m)	B (m)	Condición Actual	Bloque modelado		
Dominio 2	15	13	TO BE SAME AND A STREET			
Dominio 2	Dip (°)	Dipdir (°)	PERCENT AND THE REAL PROPERTY OF			
	70	229	and the second second			
E	structuras		TRANS STREET			
Set	Dip (°)	Dipdir (°)	I there was a state			
1	69	259	and the second second second	~ 1		
2	59	198	The second se	1+x		
3	375	0.70	LICENSING MARKED STATES			

Geon	netría del Ta	alud	Sect	or E6
	h _b (m)	B (m)	Condición Actual	Bloque modelado
Dominio 2	15	13	a state of the second sec	n
Dominio S	Dip (°)	Dipdir (°)		
	65	221	And the second second	λ
E	structuras		Salah Collars Sta	
Set	Dip (°)	Dipdir (°)	A PARK STREET	
1	69	262		$\langle \rangle$
2	53	165	AN AN	$ _{\infty} \to \infty$
3	-	10-1	A A A A A A A A A A A A A A A A A A A	

Geom	netría del Ta	alud	Sector E4S3C				
	h _b (m)	B (m)	Condición Actual	Bloque modelado			
Dominio 2	15	12					
Dominio 3	Dip (°)	Dipdir (°)	A CONTRACTOR				
	65	245	AND A CONTRACTOR OF A CONTRACTOR OFTA A CONTRACTOR OFT				
E	Estructuras		ALL STREETS STOL				
Set	Dip (°)	Dipdir (°)	State State State State				
1	38	234	AND DESCRIPTION OF THE OWNER.	-			
2	40	217	With the state of the second se	2			
3	56	264					

Analisis de estabilidad 2 October 2024

Calibration of properties

FIGURE A CONTRACT A CONTRACTACT A CONTRACTACT A CONTRACTACT A CONTRACTACTACTA

Geotechnical units and mechanical properties

Failure envelopes

Pore pressures

BHP

Calibration of geotechnical models

Master sections

- Visualisation of all available data and reconciliation of reality vs models
- Representative of expansions (mine sequence) in terms of orientation, geotechnical units, structural conditions and ground water.

Inter ramp analysis

Design curves

Porphyry Feldspar

Parameter	Value	Observation
GSI	25	Representative value
UCS	28 MPa	Estimated value based on PLT
Mi	9	Estimated value
D	0.5	Damage conditions

Analisis de estabilidad

Analisis de estabilidad 2 October 2024

2D Global analysis

Building blocks

Geotechnical units (block model)

Numerical estimation of pore pressures

Geotecnical section (geotechnical unit + piezometric line)

Global stability analysis (example for 0.22g pseudo-static loads)

2D Global analysis

Mine sequence

		Factor de Seguridad			
Casos		Probabilidad de Falla	FS		
	509	0.6%	2.24		
	N14	0.1%	2,29		
	N15	20.9%	1.30		
	\$10	8.3%	1.62		
	\$16	4.3%	1.85		
	S11	1.8%	1.60		
Estático	C18	1,2%	1,76		
	C19	6,4%	1,56		
	N17	11,7%	1,53		
	C20	2,8%	1,94		
	C21	4,6%	1,71		
	FASE_13	0,1%	2,37		
	S09	1,3%	1,94		
	N14	0,7%	1,90		
	N15	33,2%	1,15		
	S10	17,7%	1,37		
	\$16	9,9%	1,53		
Sismo	S11	8,9%	1,33		
operacional	C18	6,4%	1,45		
	C19	16,0%	1,31		
	N17	20,4%	1,32		
	C20	8,5%	1,59		
	C21	13,4%	1,39		
	FASE_13	0,4%	1,96		
	\$09	0,0%	1,66		
	N14	3,5%	1,55		
	N15	60,3%	0,92		
	\$10	32,5%	1,16		
	\$16	20,8%	1,27		
Sismo máximo	S11	33,0%	1,09		
	C18	25,8%	1,16		
	C19	38,4%	1,08		
	N17	34,8%	1,13		
	C20	19,4%	1,30		
	C21	35,8%	1,11		
	FASE_13	2,4%	1,59		

BHP

Inter ramp and global stability assessment

						Estático		Sismo Operacional		Sismo Máximo
Fase	Perfil	Talud	Altura H (m)	Angulo (°)	Peso W (KN/m)	Factor de Seguridad FS	Peso W (KN/m)	Factor de Seguridad FS	Peso W (KN/m)	Factor de Seguridad FS
		Global	190	39	110	1,549	123	1,303	117	1,057
	p01	Inter-Rampa	48	45	15	1,526	15	1,302	12	1,026
		Inter-Rampa	116	52	104	1,525	108	1,306	123	1,135
		Global	201	48	119	1,298	143	1,152	129	0,921
N15	p02	Desacople	66	45	14	1,513	15	1,294	15	1,082
p03		Desacople	135	51	92	1,333	97	1,164	90	0,999
		Global	115	37	90	1,820	80	1,493	85	1,243
	p03	Inter-Rampa	102	43	84	1,841	79	1,528	84	1,270
		Desacople	39	48	14	1,517	14	1,318	15	1,111

						Estático		Sismo Operacional		Sismo Máximo
Fase	Perfil	Talud	Altura H (m)	Angulo (°)	Peso W (KN/m)	Factor de Seguridad FS	Peso W (KN/m)	Factor de Seguridad FS	Peso W (KN/m)	Factor de Seguridad FS
		Global	185	38	150	1,598	158	1,333	143	1,092
	p 01	Inter-Rampa	65	42	54	3,258	55	2,696	56	2,187
	por	Inter-Rampa	90	53	84	1,725	83	1,475	78	1,299
		Desacople	50	45	13	1,631	14	1,404	14	1,167
		Global	182	38	124	1,757	121	1,458	114	1,185
	p02	Inter-Rampa	117	45	82	2,219	80	1,881	81	1,560
\$10		Desacople	40	48	8	1,707	8	1,476	9	1,249
310		Global	187	38	111	1,797	112	1,477	108	1,213
	202	Inter-Rampa	138	45	79	2,023	74	1,882	79	1,567
	pus	Desacople	55	47	12	1,505	13	1,306	13	1,091
		Desacople	82	47	52	2,171	50	1,927	50	1,625
		Global	204	39	107	1,617	113	1,374	111	1,160
	p04	Inter-Rampa	96	50	65	2,033	72	1,823	70	1,593
		Desacople	69	47	15	1,454	15	1,230	16	1,032

Analisis de estabilidad 2 October 2024

Analisis de estabilidad 2 October 2024

16

2D Inter ramp and global analysis

Lower global factor of safety

- A lower global factor of safety may require additional design steps.
- If inter ramp walls are found stable, step outs can be allocated to flatter global angle to increase the factor of safety.
- If also inter ramp wall was found unstable, berm width can be increased to flatter inter ramp angle.
- If both inter ramp and global factor of safety is found, combining options can be generated and an economic evaluation to determine which combination (berm width and step out size) is optimum.

Numerical model calibration

Source of information for calibration:

- History of past wall failures
- Instrumentation provides history of deformation

Model calibration:

- Replicate historical past failures
- Replicate level of deformation

Type of calibration

- Geotechnical model input (eg, structure driving failure)
- Numerical inputs (eg, properties)

Numerical model calibration GSI ± 20%

Numerical model calibration replicating failure mechanism

Explicit structures and their properties can be added to the model to better replicate a failure mechanism.

Influence of faults in the numerical model

Failure mechanism due to lower properties of fauls

Analisis de estabilidad

Influence of numerical model setting

Main aspects:

- Mesh size: Coarser mesh may hide potential failures due to 3D geometry aspects, areas of litho contacts, faults.
- Boundary limits: size of the model enough to avoid boundary limit effects introducing artifacts.

Target to feed monitoring plan

Target areas during FY15

Target areas during FY16

Additional assessments

Pit wall interaction with mine infrastructure

Analisis de estabilidad 2 October 2024

Additional assessments

Pit wall interaction with mine infrastructure

* Displacement up to 20 cm in FY27

Displacemente up to 25 cm al FY27

* Rebound effect issue.

Analisis de estabilidad 2 October 2024

Additional assessments

Ground support

LOP, 2009

Pit stability after mine closure

Pit lake formed after mine closure at BHP Island Copper mine

Click to add Presentation Title

Failure modes

North east toppling

Click to add Presentation Title

West slope movement (north end)

West slope movement (south end)

BHP

Click to add Presentation Title

Design options

Design options

Pit stability and water

Click to add Presentation Title

Pit stability and water

Stability conditions after closure would include additional support (eg, buttress) and change of rockmass conditions (eg, pit lake formation)

(b) Run 3c - Backfill to RL0 m

Click to add Presentation Title 2 October 2024

Pit stability and water

(a) Run 1 - Dry

(b) Run 1 - Wet (GWT 50m & Hu=0.7)

(c) Run 1 - Wet (GWT 30m & Hu=0.7)

Hu = pore pressure factor

QWT+ Groundwater table

Click to add Presentation Title

Waste dump

Waste dump

Click to add Presentation Title

Waste dump

Waste dump after closure conditions may require modifications such as cutback some areas to meet stability conditions in the long term. Stability conditions after closure includes consequences on natural systems or local communities.

Implementation and monitoring

Figure 8.4: Deep Pit Detectable LOS Displacement Data Collected from the TerraSAR-X Satellite between June 2014 and March 2019

Click to add Presentation Title

Flowchart

Bow tie

Implementation of design involves a risk management process and controls in place.

Geotechnical design is usually a critical control that requires other critical controls such as characterisation, monitoring and ground control for an effective implementation.

Sites	Example Scenarios for Sites	Potential causes	Preventive controls	Mitigating controls	
	 Overall wall failure (height 240 m) Overall wall failure (height 60 m) Overall wall failure (height 550 - 600 m) Overall wall failure (height 650 m) Overall wall failure (height 340 m) Overall wall failure (height m) Overall wall failure (height 50 m) Overall wall failure (height 500 m) 	 Adverse rock mass quality Adverse structural systems Excessive pore pressures Adverse natural conditions (tectonic earthquakes, rainfalls or wind) Poor geotechnical assessment Deviation of design execution Ineffective geotechnical monitoring (including piezos) Ineffective ground control Operational practices - Excessive design/execution of drill&blast (blast damage) or 	 Geotechnical wall design Surface Water / Groundwater management Wet season preparedness 		
	Failure propagation to Rancheria river		plans 4. Geotechnical characterisation	1. Emergency response	
	 Failure creating tsunami at the bottom of pit lake 		 QA/QC / as builts Monitoring and response 	plan	
	 Failure propagation to Peak Downs railway corridor Failure propagation to Denman (public) road (Mt Arthur) 		system b. Geotechnical reconciliation 8.Ground control system		
	 Failure propagation to Los Colorados extension Failure propagation to Hamburgo Tailings 	over digging	9. Capability / QA/QC		

#