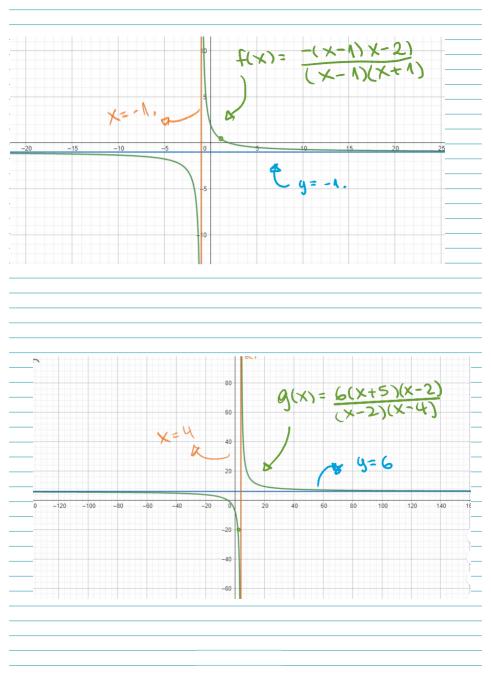


PAUTA AUXILIAR 5 INTRODUCCIÓN DE VAICULO S9.
gracio Dagach Augattas
P1. Para comenzar
NOTAR QUE:
$\frac{f(x) = -x^2 + 3x - 2}{x^2 - 1} \qquad \frac{g(x) = 6x^2 + 18x - 60}{x^2 - 6x + 8}$
$= \frac{-(x^2 - 3x + 2)}{x^2 - 4} = \frac{6(x^2 + 3x - 40)}{x^2 - 6x + 8}$
= -(X-1)(X-2) = 6(X+5)(X-2) $(X-1)(X+1) = (X-2)(X-4)$
HOTAR QUE $f(X) = \frac{P(X)}{Q(X)} + \frac{Q(X)}{Q(X)}$
donde P, P, Q, Q' son funciones politrónicas del mismo JEADO, por tanto las asintotas morzontales para estos serain
PANA f , la recta $y = \frac{4}{bn} = \frac{1}{1} = -1$ PANA g , la recta $y = \frac{4}{bn} = \frac{4}{1} = -1$

los do minios seran el lugar geométrico donde mestras funciones tienen sentido (No se moleterminan) DOM(f)= 12/1-1,19 DON (9) = 1R / \$2, 43 las asintatas verticalex serán los ceros excusivos del devominador de ada FUNCION ie. los asintatas verticales perán: recta $9(x) = \frac{6x^2+18x-60}{x^2-6x+8}$ $=\frac{-(x^2-3x+2)}{x^2-1}$ $= \frac{6(x^2 + 3x - 10)}{x^2 - 6x + 8}$ = -(X-1)(X-2)= 6(x+5)(x-2)(X-1)(X+1) (x-2)(x-4)



P2. Matraca b) Invectividad de f Solución: Tenemos que

Considere la funcion f dada por $f(x) = \frac{x+1}{2x+1}$ y determine:

- a) Dominio, Imagen, ceros y signos
 - c) ¿Existe $f^{-1}: \mathrm{Im}(f) \to \mathrm{Dom}(f)$? Si es así entregue una formulación explícita de la
 - d) Crecimiento de f en el intervalo $(-\infty, -1/2)$

Por otro lado,

 $Dom(f) = \{x \in \mathbb{R} \mid f(x) \in \mathbb{R}\}\$
$$\begin{split} &= \left\{ x \in \mathbb{R} \mid \frac{x+1}{2x+1} \in \mathbb{R} \right\} \\ &= \left\{ x \in \mathbb{R} \mid 2x+1 \neq 0 \right\}. \end{split}$$

(0.5 pts)

Notemos que el denominador se anula cuando 2x + 1 = 0, es decir, cuando $x = -\frac{1}{5}$. Por lo tanto, $Dom(f) = \mathbb{R} \setminus \left\{-\frac{1}{2}\right\}.$

$$\text{Im}(f) = \{y \in \mathbb{R} \mid \exists x \in \text{Dom}(f) \text{ tal que } f(x) = y\}.$$

Veamos qué restricción debe satisfacer un $y \in \mathbb{R}$ para que exista un $x \in \text{Dom}(f)$ tal que y = f(x).

Esto es.

$$f(x) = y \iff y = \frac{x+1}{2x+1}$$
 (0.5 pts

 $\iff 2xy + y = x + 1$ $\iff y-1=x(1-2y)$

$$1-2y$$

donde en el último paso se requiere que $1-2y\neq 0,$ es decir, $y\neq \frac{1}{2}.$ Por lo tanto,

$$\operatorname{Im}(f) = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}.$$

Para encontrar los ceros de la función, debemos encontrar los valores $x \in Dom(f)$ para los cuales

$$f(x)=0.$$
 Para ello,
$$f(x)=0 \Longleftrightarrow \frac{x+1}{2x+1}=0$$

Por lo tanto, la función es igual a cero cuando x = -1.

Finalmente, para determinar los signos de la función, consideremos los puntos críticos
$$x=$$
 evaluemos la función en los intervalos $(-\infty,-1),\,(-1,-\frac{1}{2})$ y $(-\frac{1}{2},\infty)$:

(0.5 pts)

(0.5 pts)

evaluemos la función en los inter	valos $(-\infty, -1)$,	$(-1, -\frac{1}{2})$ y $(-\frac{1}{2})$	½,∞):	
	$\ (-\infty, -1) \ $	$\left (-1, -\frac{1}{2}) \right $	$(-\frac{1}{2}, \infty)$	
x+1	-	+	+	
2x + 1 x + 1	-	-	+	

2x + 1Por lo tanto, la función es positiva en $(-\infty, -1) \cup (-\frac{1}{5}, \infty)$ y negativa en $(-1, -\frac{1}{5})$.

P	2.	N	Ia	t	ra	c

Considere la funcion f dada por $f(x) = \frac{x+1}{2x+1}$ y determine:

- a) Dominio, Imagen, ceros y signos
- b) Inyectividad de f
 - c) ¿Existe $f^{-1}: {\rm Im}(f) \to {\rm Dom}(f)$? Si es así entregue una formulación explícita de la misma
- d) Crecimiento de f en el intervalo $(-\infty, -1/2)$

Solución: Veamos primero que $f: \text{Dom}(f) \to \text{Im}(f)$ es inyectiva. Para demostrar la inyectividad, tomamos $x_1, x_2 \in \text{Dom}(f)$ tales que $f(x_1) = f(x_2)$, y debemos probar que $x_1 = x_2$. Veamos

$$f(x_1) = f(x_2) \iff \frac{x_1 + 1}{2x_1 + 1} = \frac{x_2 + 1}{2x_2 + 1}$$

$$\iff (x_1 + 1)(2x_2 + 1) = (x_2 + 1)(2x_1 + 1)$$

$$\iff 2x_2 + x_1 = 2x_1 + x_2$$

$$\iff x_2 = x_1$$
(0.3 pts)

Por lo tanto, f es inyectiva.

Además, como $f: \mathrm{Dom}(f) \to \mathrm{Im}(f)$ es inyectiva y $\mathrm{Cod}(f) = \mathrm{Im}(f)$ (es epiyectiva), entonces f es biyectiva y, por tanto, posee inversa $f^{-1}: \mathrm{Im}(f) \to \mathrm{Dom}(f)$. (0.5 pts)

Finalmente, la expresión de f^{-1} se puede encontrar al "despejar"x (cálculos precedentes). Así, para todo $x\in {\rm Im}(f)$, vamos a tener que

$$f^{-1}(x) = \frac{x-1}{1-2x}.$$

(0.5 pts)

(0.2 pts)

Solución: Veamos que f es decreciente en $(-\infty, -\frac{1}{2})$. Al ser f inyectiva, la desigualdad es automáticamente estricta (0.5 pts).

Sean $x_1, x_2 \in (-\infty, -\frac{1}{2})$ tales que $x_1 < x_2$ (0.2 pts). Luego,

$$\begin{array}{ll} x_2-x_1>0 & \Longleftrightarrow (2x_2+1)(x_1+1)-(2x_1+1)(x_2+1)>0 & \textbf{(0.3 pts)} & \text{(Ver desarrollo anterior)} \\ & \Longleftrightarrow \frac{(2x_2+1)(x_1+1)-(2x_1+1)(x_2+1)}{(2x_1+1)(2x_2+1)}>0 \end{array}$$

$$\iff \frac{x_1+1}{2x_1+1} - \frac{x_2+1}{2x_2+1} > 0$$
 (0.3 pts)
 $\iff f(x_1) > f(x_2).$

Por lo tanto, f es decreciente en $(-\infty, -\frac{1}{2})$.

(0.2 pts)

P3. De controles
Considere la funcion f dada por $f(x) = x - \sqrt{1 - x }$ y determine:
a) Dominio, paridad, ceros y signos
b) Crecimiento de f
c) Imagen de f
d) Inversa de $f _{\text{Dom}(f)\cap(-\infty,0)}$
ara el dominio A debemos encontrar los valores de x tal que $\sqrt{1- x } \in \mathbb{R}$. Esto es, ebe satisfacer que $ x \leq 1$, por lo que $A=[-1,1]$. (0.5 ptos.) $=$ $\bigcirc ou(\mathbf{f})$
n el intervalo [0,1], los ceros cumplen $0 = x - \sqrt{1-x} \implies x = \sqrt{1-x} \implies x^2 = 1$
e aquí se obtiene una cuadrática que tiene sólo una solución en el intervalo: $x=\frac{-1+\sqrt{2}}{2}$
(20°).
n el intervalo [-1,0), los ceros cumplen $0 = -x - \sqrt{1+x} \implies x = -\sqrt{1+x} =$
$t^2=1+x$. De aquí se obtiene una cuadrática que tiene sólo una solución en el interval $t=\frac{1-\sqrt{5}}{2}$. (0.25 ptos)
$=\frac{2}{2}$. (0.25 ptos)
ota: también se puede haber observado la paridad antes y así buscar solo los ceros o
s positivos (o negativos).
ados los ceros de la función hay tres intervalos a considerar para los signos. La función
s positiva en $\left[-1, \frac{1-\sqrt{5}}{2}\right]$, negativa en $\left(\frac{1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}\right)$, y positiva en $\left(\frac{-1+\sqrt{5}}{2}, 1\right]$. Para es
asta evaluar algunos puntos, por ejemplo, $f(-1) = 1$, $f(0) = -\sqrt{1}$ y $f(1) = 1$. (0.5 pto
demás, la función es par, ya que $f(-x) = -x - \sqrt{1- -x } = x - \sqrt{1- x } = f(x)$
or la paridad del valor absoluto. (0.5 ptos)

Considere la funcion f dada por $f(x) = x - \sqrt{1 - x }$ y determine:
a) Dominio, paridad, ceros y signos
b) Crecimiento de f
c) Imagen de f
d) Inversa de $f\Big _{\mathrm{Dom}(f)\cap(-\infty,0)}$
La función es decreciente en $[-1,0)$ y creciente en $[0,1]$. Para ver que es decreciente en $[-1,0)$, consideremos $x,y\in[-1,0)$, con $x< y$. Como $-x>-y$ y $-\sqrt{1+x}>-\sqrt{1+y}$, al sumar estas dos desigualdades se obtiene que $f(x)=-x-\sqrt{1+x}>-y-\sqrt{1+y}=f(y)$ (0.5 ptos.)
Para ver que es creciente en $[0,1]$ basta tomar $x,y \in [0,1]$, con $x < y$ y de forma análoga llegamos a que $f(x) = x - \sqrt{1-x} > y - \sqrt{1-y} = f(y)$. (0.5 ptos.)
Nota: por la paridad de f , también basta analizar el crecimiento solo para los positivos (o negativos).
El conjunto imagen es $[-1,1]$. La función es decreciente en $[-1,0]$ y $f(-1)=1$, $f(0)=-\sqrt{1}$ =-1. Así $f([-1,0])=[-1,1]$. La función es creciente en $[0,1]$ y $f(0)=-1$, $f(1)=1$. Así, $f([0,1])=[-1,1]$. Se concluye que $f(A)=f([-1,0])\cup f([0,1])=[-1,1]$. (0.2 ptos. por la respuesta, 0.8 ptos. por justificar adecuadamente.)

P3. De controles

P3)D) inversa de f Dou(+) n (-00,0)
fen el [-1,0) es injectiva pues:
aados x, y e [-1,0) con x + y
Spa X24

consideremos $x, y \in [-1, 0)$, con $x < y$. Como $-x > -y y - \sqrt{1 + x} > -\sqrt{1 + y}$, al sumar estas dos desigualdades se obtiene que $f(x) = -x - \sqrt{1 + x} > -y - \sqrt{1 + y} = f(y)$ (0.5 ptos.)
y en Partiwlar f(x) = f(y)
la imagen de f en el (E1,0)
es (-1, 1] = Im (f(xonx), (-0,0))
Fuer F(-1) = 1
y f(0)=-1
9 fer decreciente en el T-1,0)
J (3, Decide M C C C C C C C C C C C C C C C C C C
=> f: lm(f bonfn(-00,0) -> Don(f)n(-00,0)
f1: (-1,1] -> [-1,0) es the que
— $A \cap (-\infty, 0) = [-1, 0)$. Necesitamos entonces encontrar la inversa de $f(x) = -x - \sqrt{1 + x}$. — Tomando $y = f(x)$, se tiene $y + x = -\sqrt{1 + x} \implies y^2 + 2xy + x^2 = 1 + x \implies$
$x^2 + (2y - 1)x + y^2 - 1 = 0.$

x + (2y - 1)x + y = 1 = 0.

Esta es una cuadrática con soluciones de la forma
$$x = \frac{1-2y \pm \sqrt{5-4y}}{2}. \quad (1 \text{ pto.})$$

— Se debe tomar un sólo signo para que sea función (0.2 puntos). Si y=1 la expresión

Se debe tomar un solo signo para que sea funcion (0.2 puntos). Si y=1 la expresion arriba nos arroja x=-1, pues f(-1)=1, y esto sólo ocurre cuando tomamos el signo menos (0.6 puntos). Así, la inversa es $f:(-1,1] \to [-1,0)$ con

$$f(x) = \frac{1 - 2x - \sqrt{5 - 4x}}{2}$$
. (0.2 ptos.)