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Exploring parameter (dis)agreement due to calibration metric selection in 
conceptual rainfall–runoff models
Eduardo Muñoz-Castro a, Pablo A. Mendoza a,b, Nicolás Vásquez a and Ximena Vargasa

aDepartment of Civil Engineer, Universidad de Chile, Santiago, Chile; bAdvanced Mining Technology Center (AMTC), Universidad de Chile, Santiago, Chile

ABSTRACT
We examine the extent to which the parameters of different types of catchments are sensitive to 
calibration criteria selection (i.e. parameter agreement), and explore possible connections with overall 
model performance and model complexity. To this end, we calibrate the lumped GR4J, GR5J and GR6J 
hydrological models – coupled with the CemaNeige snow module – in 95 catchments spanning a myriad 
of hydroclimatic and physiographic characteristics across Chile, using 12 streamflow-oriented objective 
functions. The results show that (i) the choice of objective function has smaller effects on parameter 
values in catchments with low aridity index and high mean annual runoff ratio, in contrast to drier 
climates; and (ii) catchments with better parameter agreement also provide better performance across 
model structures and simulation periods. More generally, this work provides insights on the type of 
catchments where it is more challenging to find sub-domains in the parameter space that satisfy multiple 
streamflow criteria.
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1 Introduction

Hydrological models are useful tools that support decision 
making in water resources applications, including flood design 
(Boughton and Droop 2003, Newman et al. 2021), hydrologi-
cal forecasting (Mendoza et al. 2012, Rakovec et al. 2015, 
Wanders et al. 2019), and climate change impacts on water 
resources (Driessen et al. 2010, Addor et al. 2014, Chegwidden 
et al. 2019). In particular, conceptual rainfall–runoff models 
have been widely used because of their lower data require-
ments and computational cost compared to more complex 
alternatives (Knoben et al. 2019). The application of these 
models has typically relied on the adjustment (i.e. calibration) 
of “free” parameters (Yapo et al. 1998, Vrugt et al. 2003b), 
a problem that has been challenging the hydrology community 
for decades. Nevertheless, in recent years we have seen tre-
mendous advances towards new strategies advocating for more 
realistic process representations (Yilmaz et al. 2008, Shafii and 
Tolson 2015, Nijzink et al. 2018, Konapala et al. 2020).

The identification of an adequate set of hydrological model 
parameters involves several methodological choices, whose 
subjective nature and implications have been widely recog-
nized (e.g. Diskin and Simon 1977, Green and Stephenson  
1986, Oudin et al. 2006, Melsen et al. 2019). Among these 
decisions, the selection of the calibration objective function(s) 
is critical, since it defines the target variables and/or processes 
that need to be well reproduced (Pushpalatha et al. 2012, Pool 
et al. 2017, Nemri and Kinnard 2020, Sepúlveda et al. 2022).

For the case of streamflow, several calibration metrics have 
been formulated to achieve good performance along the time 
domain and/or the signature domain (Fenicia et al. 2018). Time- 

domain metrics provide a direct contrast between time series of 
simulations and observations, and their mathematical formula-
tion determines which parts of the hydrograph (i.e. which pro-
cesses) are given more weight (Yapo et al. 1998, Boyle et al. 2000, 
Vrugt et al. 2003a). Among time-domain metrics, least squares 
formulas like the Nash-Sutcliffe efficiency (NSE; Nash and 
Sutcliffe 1970) and variants (e.g. Kling-Gupta efficiency, KGE; 
Gupta et al. 2009) are popular choices for which variations based 
on transformations have been also proposed (Chiew et al. 1993, 
Santos et al. 2018). On the other hand, signature-domain per-
formance metrics result from contrasting hydrological signa-
tures – i.e. metrics that quantify streamflow properties (e.g. 
runoff ratio, the slope of the flow duration curve, streamflow 
elasticity; see review by McMillan 2021) – from observed and 
modelled streamflow data. The last few years have seen 
a proliferation of studies proposing calibration metrics that 
combine hydrological signatures (Shafii and Tolson 2015, Beck 
et al. 2016, Pool et al. 2017, Yang et al. 2019) to obtain parameter 
sets that ensure the “hydrological consistency” (Martinez and 
Gupta 2011) of model simulations.

Despite the large number of calibration metrics proposed and 
the development of multi-objective optimization algorithms for 
hydrological modelling (Yapo et al. 1998, Boyle et al. 2000, Vrugt 
et al. 2003a, Vrugt and Robinson 2007), the selection of objective 
function(s) is still a topic of active research and debate, partly 
because water managers typically seek to achieve model accuracy 
in specific streamflow properties (Mizukami et al. 2019). Hence, 
a large body of work has investigated the implications of calibra-
tion criteria selection on different aspects, including parameter 
identifiability (e.g. Pechlivanidis et al. 2014), simulation of flood 
hydrographs (e.g. Servat and Dezetter 1991), drought 
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characteristics (e.g. Melsen et al. 2019), annual peak flow biases 
(e.g. Mizukami et al. 2019), streamflow characteristics (e.g. Pool 
et al. 2017, 2018), spatial patterns in model states and fluxes (e.g. 
Dembélé et al. 2020), and projected hydrological changes (e.g. 
Najafi et al. 2011, Mendoza et al. 2016, Seiller et al. 2017).

In spite of the awareness that the parameters of conceptual 
rainfall–runoff models are inherently related to hydrological 
processes (Guse et al. 2017), only a few studies have investi-
gated the variability in parameter values due to calibration 
criteria selection. Diskin and Simon (1977) showed, for the 
Ekron watershed in Israel, that the optimal parameters of 
a four-parameter conceptual hydrological model may have 
considerable variations depending on the choice of calibration 
objective function. Abdulla et al. (1999) compared parameter 
values in the ARNO model obtained with four calibration 
metrics for baseflow errors, using data from 24 basins; they 
reported large variations in the maximum soil moisture and 
the moisture content threshold parameter. Gupta et al. (2009) 
compared optimal parameter values of the HBV model 
obtained from calibrations with NSE and KGE in 49 catch-
ments in Austria, finding that, in only a few basins, two or 
more parameters (out of six) suffered large variations. Muleta 
(2012) assessed the ability of nine calibration objective func-
tions to produce robust streamflow simulations across five 
gauges in the Little River experimental watershed (USA). 
From their calibration experiments with the Soil and Water 
Assessment Tool (SWAT) model and the dynamically dimen-
sioned search algorithm (DDS; Tolson and Shoemaker 2007), 
they found that the objective function affected the optimal 
parameter values, even when streamflow simulated with a set 
of known parameters was used as the “truth.” Wu and Liu 
(2014) also reported large variations in six parameters within 
the SWAT model in one case study basin in China, contrasting 
results from two objective functions based on square errors, 
and two calibration metrics based on absolute errors. Garcia 
et al. (2017) compared GR4J parameter values obtained from 
two different objective functions for the streamflow Q – KGE 
(Q0.5) vs. one combining KGE(Q) with KGE(1/Q) – across 691 
catchments in France, finding large differences in X1 (capacity 
of production store) and X2 (groundwater exchange coeffi-
cient). They also found large differences in the X4 (unit hydro-
graph time base) parameter across catchments where 
groundwater contributions to total runoff are more important. 
More recently, Song et al. (2019) showed that the choice of 
objective function – NSE(Q0.5) vs. KGE(Q0.5) – produced large 
variations in some parameters contained in two conceptual 
rainfall–runoff models applied in 41 catchments across South 
Korea.

Although some of the aforementioned studies (Abdulla 
et al. 1999, Gupta et al. 2009, Garcia et al. 2017, Song et al.  
2019) used a large number (>20) of catchments, several ques-
tions remain unanswered about the (dis)agreement of optimal 
parameter values given the choice of calibration metric (here-
after, parameter agreement), including:

(1) Are there connections between parameter agreement 
and catchment characteristics?

(2) What is the role of increasing model complexity 
in parameter agreement?

(3) Is hydrological model performance related to para-
meter agreement?

To address the above questions, we calibrate the parameters of 
three GRXJ rainfall–runoff models (Perrin et al. 2003, 
Pushpalatha et al. 2011) – where “X” denotes the number of 
parameters involved – coupled to the snowmelt and accumula-
tion model CemaNeige (Valéry et al. 2014a, 2014b), using a global 
optimization algorithm and 12 different objective functions. The 
calibration results are used to compute a parameter agreement 
index that quantifies parameter variability arising from the choice 
of calibration metric. To explore possible connections between 
parameter agreement and climatic or physiographic characteris-
tics, we conduct calibration experiments in 95 catchments along 
continental Chile (17–57°S) and perform a clustering step based 
on agreement results from each model structure to identify 
groups with good or bad parameter agreement indices. Finally, 
we examine whether high parameter agreement relates to overall 
model performance during the calibration period and two inde-
pendent verification periods. Our study contributes to the existing 
literature by (1) providing detailed insights about the impacts of 
calibration metric selection on parameter values of conceptual 
hydrological models when the calibration problem is addressed 
from a single-objective perspective, and (2) providing guidance 
on the catchments where it is more challenging to find regions 
within the parameter space that satisfy multiple criteria (i.e. to 
find parameter sets that can be used for a myriad water resources 
applications).

2 Study domain and datasets

2.1 Catchment selection

Our study domain includes several catchments located in 
continental Chile (Fig. 1), which spans a diverse range of 
physiographic (i.e. topography, geology, soil types, land 
cover) and hydroclimatic characteristics. In particular, we 
select a suite of basins that meet the following requirements: 
(i) a low human intervention degree index (i.e. < 0.05), which 
is defined as the ratio between annual flow of surface water 
rights (consumptive permanent continuous), and the mean 
annual runoff measured at the catchment outlet (Alvarez- 
Garreton et al. 2018); (ii) the absence of large reservoirs and 
non-consumptive water withdrawals, unless their restitution is 
located upstream of the streamflow gauge; (iii) at least 40% of 
days with streamflow observations during the period 1985– 
2005 (which is used for model calibration; see details in 
Section 3); and (iv) at least 20% of daily streamflow observa-
tions in the evaluation periods 2005–2010 and 2010–2017. 
Importantly, the fractional area covered by impervious sur-
faces – which are typically associated with urbanized areas – 
ranges between 0 and 1.4% (obtained from Alvarez-Garreton 
et al. 2018) across our sample of basins.

The resulting 95 near-natural catchments (Fig. 1) reflect 
the spatial variability of hydroclimatic conditions across 
continental Chile. For example, we note a transition from 
negligible precipitation amounts in the Far North, increas-
ing towards Southern Chile, and lower precipitation in 
Patagonia. Additionally, there is a marked precipitation 
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seasonality index (i.e. seasonality and timing of precipita-
tion; see p-seasonality description in Table 1) in Northern 
and Central Chile, with peaks during Southern Hemisphere 
summer (January–March) and winter (July–September), 
respectively, unlike the Austral Zone and Southern 
Patagonia where the distribution of precipitation is uni-
form across the year (p-seasonality close to zero); 
a transition from very large to small aridity indices from 

North to South; and increasing mean annual runoff ratios 
towards the south (for more detailed discussion, the reader 
is referred to Alvarez-Garreton et al. 2018). Such diversity 
yields large spatial heterogeneities in terms of hydrological 
responses (Vásquez et al. 2021), making our sample of 
catchments suitable for detailed examination of possible 
dependencies between hydrological modelling results and 
catchment descriptors.

Table 1. Physiographic and climatic catchment attributes used in this study (derived from Alvarez-Garreton et al. 2018).

Attribute class Attribute name Unit Description

Location and topography Latitude ° Gauge latitude (based on DGA records).
Area km2 Catchment area.
Mean elevation m a.s.l. Catchment mean elevation.
Slope m/km Catchment mean slope.
Elevation range m Difference between catchment maximum and minimum elevation.

Land cover characteristics Forest fraction % Percentage of the catchment covered by forest, including native forest and forest 
plantations.

Barren soil % Percentage of the catchment covered by barren lands.
Climatic indices (computed for 

1 April 1985–31 March 2015)
Precipitation 

seasonality* 
(p-seasonality)

- Seasonality and timing of precipitation, estimated using sine curves to represent 
the annual temperature and precipitation cycles; positive (negative) values 
indicate precipitations peaks in summer (winter); values close to 0 indicate 
uniform precipitation throughout the year.

Precipitation mm/y Average annual precipitation at catchment scale derived from CR2Met v. 2.0.
Temperature °C Average annual mean temperature at catchment scale derived from CR2Met v. 2.0.
Potential  

evapotranspiration
mm/y Average annual potential evapotranspiration (PET) at catchment scale computed 

using Oudin’s method.
Aridity index - Aridity, calculated as the ratio of average annual PET to average annual 

precipitation in the catchment.
Hydrological indices (computed 

for 1 April 1985– 
31 March 2015)

Runoff mm/y Average annual runoff at the catchment outlet (based on DGA records).
Runoff ratio - Calculated as the ratio of average annual runoff and average annual precipitation in 

the catchment.

*p-seasonality is retrieved directly from the CAMELS-CL dataset (i.e. not re-computed for the period 1985–2015).

Figure 1. (a) Study domain and mean hydroclimatic characteristics over the period 1985–2015, including (b) mean annual temperature, (c) mean annual precipitation, 
(d) precipitation seasonality, obtained from CAMELS-CL, (e) aridity index, and (f) mean annual runoff ratio.
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2.2 Hydrometeorological time series

Streamflow time series are acquired from stations maintained 
by the Chilean Water Directorate (DGA). This information is 
public and free, and can be retrieved directly from the DGA’s 
web platform (https://dga.mop.gob.cl/), from databases such 
as the Chilean Climate Explorer (http://explorador.cr2.cl/) or 
the Catchment Attributes and Meteorology for Large-Sample 
Studies, Chile (CAMELS-CL) explorer (http://camels.cr2.cl/), 
maintained by the Center for Climate and Resilience Research 
(CR2). Daily time series of catchment-scale precipitation and 
air temperature are derived from the gridded observational 
product CR2Met (DGA 2017, Boisier et al. 2018), whose 
most recent version (v. 2.0) covers continental Chile for the 
period 1979–2020 at a 0.05° × 0.05° horizontal resolution. 
CR2Met precipitation estimates are produced through 
a statistical modelling framework that uses topographic 
descriptors and large-scale variables – such as water vapor 
fluxes and moisture fluxes – from European Centre for 
Medium-Range Weather Forecasts’s (ECMWF) atmospheric 
reanalysis-Interim (Dee et al. 2011) in previous versions and 
ERA5 (C3S 2017) in the latest – as predictors, and daily pre-
cipitation data from stations as predictands. A similar 
approach is used to generate daily maximum and minimum 
temperature time series, including additional predictors from 
Moderate Resolution Imaging Spectroradiometer (MODIS) 
land-surface products to account for spatial heterogeneities 
(e.g. differences in land cover types). The reader is referred 
to DGA (2017, 2018, 2019) for more details on the develop-
ment of CR2Met.

2.3 Ancillary data

We acquired and processed digital elevation models (DEMs) 
from the Shuttle Radar Topography Mission (SRTM; Rabus 
et al. 2003) at a 3 arc-second horizontal resolution (approxi-
mately 90 m) to obtain hypsometric curves, which are used to 
configure the representation for each basin in the snow mod-
ule through elevation bands (see section 3.1). Additionally, 
catchment boundaries and a suite of physiographic and cli-
matic attributes (Table 1) were obtained from the CAMELS- 
CL dataset (Alvarez-Garreton et al. 2018).

3 Approach

3.1 Hydrological models

We use the GR4J (Perrin et al. 2003), GR5J and GR6J 
(Pushpalatha et al. 2011) lumped hydrological models, coupled 
to the snow accumulation and ablation module CemaNeige 
(Valéry et al. 2014a, 2014b). For simplicity, we refer to these 
models as GRXJCN (i.e. GRXJ + CemaNeige; Fig. 2). All these 
models and other utilities are available through the airGR 
package (Coron et al. 2017, Laurent 2020). GRXJ models are 
conceptual, bucket-style precipitation-runoff models, which 
provide simplified representations of hydrological processes 
at the catchment scale, and only require precipitation (P), 
potential evapotranspiration (PET) and mean temperature 
(T) daily time series to run. In this study, we estimate PET 
using the formulae proposed by Oudin et al. (2005).

The CemaNeige snow module simulates the snowpack 
accumulation and melting processes through a two-parameter 

Figure 2. Scheme with the model structures, description of parameters and plausible calibration ranges.
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degree-day factor approach (DDF; DeWalle and Rango 2008), 
and also requires catchment-scale daily time series of precipi-
tation and temperature. Additionally, the snow module offers 
the option to discretize each catchment into elevation bands of 
equal area, based on the hypsometric curve. If elevation bands 
are used, precipitation and air temperature are internally 
extrapolated using orographic gradients defined by Valéry 
et al. (2010), and the partitioning of precipitation into rainfall 
and snowfall is also internally estimated as a function of band- 
averaged temperature and elevation following L’hôte et al. 
(2005).

3.2 Individual basin calibration

Hydrological model parameters are calibrated using the 
Shuffled Complex Evolution (SCE-UA; Duan et al. 1992) global 
optimization algorithm, implemented in the R package hydro-
mad (Andrews et al. 2011). We define a 5-year warm-up period 
(1 January 1980–31 March 1985) before computing the objec-
tive function with data available for the period 1 April 1985– 
31 March 2005 (30 years). For each basin and GRXJCN model, 
we conduct 12 calibrations using the objective functions listed in 
Table 2, computed with daily observed and simulated runoff 
time series. We select these objective functions because they 
belong to different families of metrics and have been widely 
used for various modelling purposes in the hydrology commu-
nity. For instance, the NSE with flows in log space (log-NSE) has 
been used to enhance baseflow simulations, while the recently 
proposed split-KGE (Fowler et al. 2018) aims to provide good 
performance in terms of streamflow timing, volume and varia-
bility under contrasting climatic conditions.

To account for parameter equifinality, we follow a similar 
strategy to Nemri and Kinnard (2020): all the iterations made 
by SCE-UA until convergence are saved, and an ensemble of 
parameter sets is selected based on the difference between the 
associated objective function value and the global optimum. If 
such a difference is smaller than 0.001 (arbitrarily defined), the 
parameter set is saved for subsequent analyses. For example, if 
the optimal KGE value obtained from a KGE-based calibration 
with SCE-UA is 0.678, only the parameter sets with KGE ≥ 
0.677 are retained. The process is repeated for each objective 
function in order to obtain a large ensemble of parameter sets 

(arising from equifinal solutions for several calibration 
metrics). If identical parameter sets that belong to different 
iterations are selected, these are merged to discard redundant 
information.

3.3 Parameter agreement analyses

3.3.1 Parameter agreement index
To quantify parameter agreement arising from the choice of 
calibration metric, we use the large ensemble of parameter sets 
to compute a modified version of the metric proposed by Zink 
et al. (2018) for each parameter and catchment: 

Rj
θi
¼ 1 �

θ j
i;P95 � θ j

i;P5

θi;max � θi;min
(1) 

where Rj
θi 

span values between 0 to 1, θ j
i;P5 and θ j

i;P95 are the 5th 

and 95th percentiles of parameter θi for catchment “j” (com-
puted from the large ensemble of parameter sets), and θi;min 
and θi;max indicate the plausible range for parameter θi (Fig. 2). 
Therefore, (lower) higher values of Rj

θi 
indicate (dis)agreement 

in the values of θi parameter in catchment j.
Additionally, to obtain a summary metric, we estimate an 

overall parameter agreement index for each basin j (R j
OA) as 

follows: 

Rj
OA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNpar
i¼1 R j2

θi

q

ffiffiffiffiffiffiffiffiffi
Npar

p (2) 

where Rj
θi 

is the agreement index for parameter θi in catchment 
j, and Npar is the number of model parameters, which varies 
between six (GR4JCN) and eight (GR6JCN). The interpreta-
tion of Rj

OA values is analogous to Rj
θi 

(i.e. 0/1 represent the 
lowest/highest parameter agreement).

To explore controls on individual parameter agreement 
across our study domain, we compute the Spearman’s rank 
correlation coefficient (ρ) between parameter agreement indices 
(Rj

θi
) obtained from each model structure, and the physiographic 

and hydroclimatic catchment descriptors listed in Table 1. We 
select these attributes regardless of possible inter-dependencies, 
since they are widely used to characterize different aspects of 
geomorphology, land cover, climate and hydrology.

Table 2. Objective functions used to calibrate the GRXJCN hydrological models (based on Fowler et al. 2018).

Class Class description and reason for application Objective function (OF) selected to calibrate

Common 
approach

Functions where the main goal is to minimize the sum of squares between observations 
and simulations at each time step.

[1] Kling-Gupta efficiency (Gupta et al. 2009), [2] 
Nash-Sutcliffe efficiency (Nash and Sutcliffe 1970)

Transformations Logarithmic, exponential (<1) or other transformations (e.g. Box-Cox) are applied to 
observed and simulated runoff to emphasize the weight of the comparison between 
higher and lower values, stabilizing the variance of the error.

[3] NSE-Log, [4] NSE(Q0.5), 
[5] KGE(Q0.5)

Absolute error By not squaring the errors, with the goal of minimizing the sum of absolute errors, the 
analysis is emphasized in the middle and low values.

[6] Refined index of agreement (dt; Willmott et al.  
2012)

Time-based 
meta- 
objective

A function to assess the model performance is applied in different sub-periods, and the 
results are subsequently combined (e.g. averaged, weighted) into a meta-objective 
function, reducing the inter-annual variability of model performance due to temporal 
instabilities in parameter values.

[7] Split KGE (Fowler et al. 2018), [8] Split KGE(Q0.5).

Meta-objective Linear combination of different functions into a meta-objective function (i.e. implicit 
multi-objective). Each metric or index provides information about the model 
performance in different components (statistical or hydrological). The assumption is 
that more information could improve the inference of parameters.

[9] Zhang Efficiency (Zhang et al. 2008), [10] 
Aggregate Objective Function (Beck et al. 2016), 
[11] KGE+NSE-Log, 
[12] KGE(Q0.5)+ NSE(Q0.5)
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3.3.2 Catchment grouping
To examine spatial patterns in parameter agreement across 
our study domain, the catchments are grouped in quartiles 
based on the overall parameter agreement indices (Rj

OA). 
To this end, the 25th, 50th and 75th percentiles of Rj

OA are 
used to define limits and group membership, with group 1 
(group 4) containing the catchments with the highest (low-
est) Rj

OA values – i.e. overall best (worst) parameter agree-
ment. The process is repeated for each GRXJCN model, 
and the results are used to analyse possible differences 
between parameter agreement groups in terms of (i) 
hydroclimatic catchment characteristics and (ii) individual 
parameter agreement indices.

3.3.3 Connections between parameter agreement and 
simulated catchment response
We examine possible connections between parameter agree-
ment groups and hydrological model performance – quantified 
by the metrics listed in Table 2. All performance metrics are 
computed for the calibration period and two independent ver-
ification periods: (i) 1 April 2005–31 March 2010, characterized 
by average conditions; and (ii) 1 April 2010–31 March 2017, 
with unprecedented dry conditions (Garreaud et al. 2017).

4 Results

4.1 Illustrating parameter (dis)agreement and simulated 
streamflow response

Figure 3 shows the streamflow response simulated with the 
large ensemble of parameter sets in three case study basins 
with different ROA values. Figure 3(a) displays results for 
a rainfall-dominated catchment with high parameter agree-
ment (except for snow parameters CN1 and CN2), where 
similar runoff time series, seasonal runoff and daily flow 

duration curves are retrieved. Conversely, Fig. 3(b) and 
(C) display results for a rainfall-dominated basin and a semi- 
arid snowmelt-driven basin, respectively, with higher para-
meter disagreement arising from the choice of calibration 
metric and equifinality. Interestingly, similar simulated 
responses are obtained for the Tolten River (Fig. 3(b)), a 
clear example of parameter equifinality, whereas large discre-
pancies are obtained for the Derecho Creek, especially in run-
off seasonality. Even more, in the latter case the choice of 
calibration metric may yield a mismatch between simulated 
and observed hydrological regimes. However, the daily flow 
duration curves are reasonably well represented, and very high 
KGE values (>0.9) can be achieved in all cases.

These results suggest that the extent to which the choice of 
calibration metric affects model outputs may depend on (i) 
specific catchment characteristics, including dominant hydro-
logical processes; and (ii) the specific modelling purpose(s). In 
the following subsections, we expand on these ideas to explore 
possible connections between parameter (dis)agreement, 
catchment characteristics, incremental model complexity and 
model performance.

4.2 Individual parameter agreement

Figure 4 displays the latitudinal distribution of parameter 
agreement indices across the study domain. Overall, the 
parameters related to snow processes (CN1 and CN2) 
show the poorest agreement (i.e. values close to zero), 
and Rθi values for parameters related to storages (i.e. X1, 
X3 and X6) span the entire plausible range (i.e. from 0 
to 1). The highest Rθi values are obtained for parameters 
associated with groundwater exchange (X2 and X5). 
Figure 4 also shows that RX2 improves when X5 is added 
to the GR4JCN model structure, suggesting that when X5 is 

Figure 3. Illustration of parameter (dis)agreement arising from calibration metric selection and equifinality, along with associated streamflow responses in terms of 
daily runoff (in log space) time series, runoff seasonality and flow duration curves for the period 1985–2015) for three case study basins: (a) Donguil River at Gorbea, (b) 
Tolten River at Teodoro Schmidt, and (c) Derecho Creek at Alcohuaz. In the first column, each box plot contains normalized parameter values from the large ensemble 
(with size N), computed as θ�i ¼ θi � θi;min

� �
= θi;max � θi;min
� �

. The results were obtained with the GR4JCN model.

6 E. MUÑOZ-CASTRO ET AL.



not included, X2 compensates for the absence (or defi-
ciency) in the missing process in the model structure. 
Conversely, RX1 and RX3 progressively decrease when para-
meters X5 and X6 are successively added to the GR4JCN 
model structure. Regarding the parameter X4 (unit hydro-
graph time constant), the best agreement indices are 
achieved for GR4JCN but, in general, all GRXJCN models 
span the plausible range. No clear latitudinal gradients are 
found for Rθi values (bottom panels in Fig. 4).

The large dispersion in Rj
θi 

(Fig. 4) suggests that the 
effects of calibration metric selection and equifinality on 
parameter values may be related to specific catchment 
attributes. To explore this idea, Fig. 5 displays the 
Spearman’s rank correlation coefficient (ρ) between Rθi 

and a suite of physiographic and hydroclimatic catchment 
descriptors (see details in Table 1). Statistical significance is 
indicated by bold circle outlines. Two important features 
are revealed: (i) statistically significant correlations exist 
between parameter agreement indices and some catchment 
descriptors, and (ii) modifications in model structure may 
switch the sign of ρ for specific combinations of parameters 
and catchment attributes. For example, ρ(RX1, P) = −0.35 
with GR4JCN, where P is the basin-averaged mean annual 
precipitation, suggesting that RX1 (i.e. agreement in X1 
values) improves in drier basins when using GR4JCN. 
Conversely, ρ(RX1, P) reaches values of 0.19 and 0.30 with 
GR5JCN and GR6JCN, respectively (similar results for RX1 
and runoff), which implies better agreement in X1 values 

(i.e. smaller effects of the choice of calibration metric and 
equifinality) across catchments with larger runoff produc-
tion. Likewise, ρ (RX2, P) = 0.24 with GR4JCN, switching to 
−0.43 and 0.03 with GR5JCN and GR6JCN, respectively, 
with a similar behaviour for RX2 and Runoff. In general, 
the type of dependence (i.e. the sign of ρ) between RX3, RX4 
and RX5 and catchment attributes does not change with 
model structure. Note that when X6 is added to GR5JCN, 
the correlation between RX2 and some catchment attributes 
decreases – e.g. mean annual runoff (from −0.43 to −0.02) 
and aridity index (from 0.43 to 0.01). Figure 5 also shows 
that more than half of the catchment descriptors (e.g. 
aridity index, mean annual runoff, mean annual precipita-
tion, forest fraction) yield |ρ| > 0.25 when correlated 
against RX4. 

In terms of snow parameters, Fig. 5 shows that a large 
fraction of catchment attributes (85–100%, depending on the 
model structure) is weakly correlated (i.e. |ρ| < 0.25) with RCN1 
(agreement index of the weighting coefficient for snowpack 
thermal state, CN1). On the other hand, RCN2 (agreement 
index for degree-day melt factor, CN2) correlates well with 
physiographic attributes like elevation (mean and range), 
slope, and barren soil fraction, and with climatic attributes 
like mean temperature and PET. In particular, RCN2 increases 
in snow-influenced catchments (see correlations with mean 
elevation and temperatures in Fig. 5). This is somehow 
expected, since snow module parameters become irrelevant 
in rainfall-dominated basins.

Figure 4. Effects of increased model complexity on parameter agreement in GR models. (a) Each box plot comprises agreement indices from 95 catchments, for 
a specific combination of parameter and model structure. (b) Variation of parameter agreement indices with latitude, where each point represents a catchment.

HYDROLOGICAL SCIENCES JOURNAL 7



4.3 Catchment grouping based on parameter agreement

Now we examine to what extent the choice of calibration 
objective function affects the agreement of parameter sets 
(quantified with ROA) across the study domain. Figure 6 
shows that parameter agreement groups are not clustered 
in space. Additionally, variations in model structure affect 
the membership of several catchments to parameter agree-
ment groups, moving towards a better-ranking (e.g. 33.7% 
from GR4JCN to GR5JCN) or worse-ranking (e.g. 28.4% 
from GR4JCN to GR6JCN) group. For example, the north-
ernmost basin in the domain (the San Jose River at 
Ausipar – BNA 1310002; outlet at 1245 m a.s.l. – 18.58°S, 
69.81°O) is assigned to group No. 3 when the GR4JCN and 
GR5JCN model configurations are used, and to cluster 
No. 4 if GR6JCN is used. In agreement with the results 
presented in Fig. 5, Fig. 6 shows that ROA generally 
improves in basins with larger annual precipitation 
amounts, lower aridity index, and higher runoff ratio if 

GR4JCN is used (i.e. parameter sets are less sensitive to 
calibration metric selection in humid regions); nevertheless, 
such a relationship is less clear as model complexity (i.e. 
number of parameters) increases, with reduced ROA values.

Figure 7 displays, for each model structure (columns), indi-
vidual parameter agreement indices Rθi (rows) stratified by 
ROA-based catchment groups (displayed as box plots). Here, 
we seek to disentangle (1) whether our catchment grouping 
strategy is useful to discriminate agreement indices for indivi-
dual parameter values – i.e. how does a specific parameter 
agreement index change from a “good” (i.e. 1) to “bad” 
(i.e. 4) cluster – and (2) how does increasing model complexity 
affect relative differences among groups. The results show that, 
in general, catchments classified as having “good” (“bad”) 
agreement in parameter sets also hold high (low) values of 
RX1, RX2, RX3 and RX4. Further, Rθi values do not necessarily 
improve when moving to groups with better ranking (e.g. X5, 
X6 and CN1 in all models). Finally, Fig. 7 also shows that 

Figure 5. Spearman’s rank correlation coefficient between catchment attributes (rows) and parameter agreement indices (columns). Each subpanel displays results for 
a specific catchment descriptor and the three coupled models from top to bottom: GR4JCN, GR5JCN and GR6JCN. The circles with thick outlines indicate statistically 
significant correlation coefficients at a 5% level.
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increasing model complexity can degrade parameter agree-
ment; for example, RX1 for group 1 spans 0.7–1.0 when using 
GR4JCN, with median of ~0.9, but it ranges from 0.25 to 1.0 in 
GR6JCN, with a median of ~0.7.

4.4 Parameter agreement and performance metrics

Each box plot in Fig. 8 displays performance metrics for the Nk 
catchments within group k (with k = 1,2,3,4). The metric value 
(e.g. KGE) for each basin is obtained as the median from the 
simulations conducted with the large ensemble of parameter 
sets (see section 3.2). The results show that, for most perfor-
mance metrics, better results are obtained with GR4JCN in 
groups with good parameter agreement compared to GR5JCN 
and GR6JCN. A notable result from Fig. 8 is that, in contrast to 
other metrics, similar dt values can be obtained in catchments 
with different overall agreement (ROA) levels. Although analo-
gous efficiency variations among groups are observed with 
GR5JCN and GR6JCN, increasing model complexity may 

degrade model performance in catchments where parameter 
agreement is poor (e.g. KGE, KGE(Q0.5)).

5 Discussion

5.1 Parameter (dis)agreement and catchment 
characteristics

The results displayed in Fig. 4 partly agree with previous work 
on parameter identification in GR models. Garcia et al. (2017) 
used a large sample of catchments (691) in France and two 
objective functions in their analyses, concluding that the 
choice of calibration metric for the GR4JCN model structure 
has smaller effects on parameters X3 and X4 compared to the 
rest (excepting catchments with high baseflow index). Nemri 
and Kinnard (2020) tested different calibration strategies – 
including search algorithm and objective criteria – using the 
GR4JCN model in 12 snow-dominated basins in Canada, 
finding a better agreement in parameter values for X2 and 
X4. Our study shows better parameter agreement in X2 across 

Figure 6. Agreement groups for GRXJCN models and catchment hydroclimatic attributes. Group 1 (G1) denotes the group of catchments with the best overall 
parameter agreement index, while Group 4 (G4) indicates the group of catchments with the overall worst parameter agreement.
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Chilean catchments. Hence, these investigations suggest that 
the choice of calibration metric affects parameter values dif-
ferently depending on the suite of objective functions used and 
catchment descriptors. In particular, the correlations between 
catchment attributes and parameter agreement indices 
reported here (Fig. 5) – and a missing piece from previous 
studies (Abdulla et al. 1999, Gupta et al. 2009, Garcia et al.  
2017, Song et al. 2019) – suggest possible links between hydro-
climatic characteristics and the potential to find multi-purpose 
parameter sets in specific catchments. More generally, para-
meter agreement indices are more influenced by annual 
hydroclimatology (e.g. precipitation amounts, aridity index), 
rather than the seasonality of runoff (not shown).

Additionally, the correlation analyses presented here 
demonstrate that strong associations (either positive or nega-
tive) exist between agreement indices of some parameters (e.g. 
X4, X5 and X6) and catchment-scale hydroclimatic attributes 
such as mean annual precipitation and aridity index (Fig. 5). In 
particular, the results show that the choice of calibration 
metric yields a larger disagreement in parameter values and 
simulated hydrological variables in (semi-)arid domains. 
Considering that most climate models project a warmer and 
drier future for continental Chile (Vicuña et al. 2021), the 
choice of appropriate parameter sets will be more challenging 
if the goal is to achieve hydrologically consistent model 
simulations.

As expected, a large disagreement in snow parameters was 
obtained in basins where the influence of snowmelt on runoff 
generation is negligible. Interestingly, such disagreement was 
also observed in snowy catchments (Fig. 3(c)), reflecting the 
lack of constraints – besides runoff – for process representations. 
Nemri and Kinnard (2020) showed trade-offs between calibra-
tion strategies aimed to simulate snow water equivalent (SWE) 
and runoff with GR4JCN, finding that when snow parameters 
were calibrated independently, the quality of streamflow simu-
lations decreased considerably due to overfitting of snow para-
meters on SWE observations. This stresses the need to constrain 
the parameter search in conceptual rainfall–runoff models – 
using, for example, multivariate strategies (Nijzink et al. 2018, 
Széles et al. 2020) – to find parameter sets that provide more 
realistic representations of hydrological processes.

Our results show that the influence of catchment attributes on 
the overall parameter agreement (ROA) is weaker than that 
obtained for individual parameter agreement (Rθi ), and gets 
diminished with increasing model complexity. Even more, 
increasing complexity (reflected by a larger number of para-
meters) affects agreement indices of the baseline model 
(GR4JCN). For example, the addition of threshold-type para-
meters like X5 decreases the agreement index for X1 (Fig. 5), 
reinforcing the idea that model complexity may augment para-
meter identification problems (Doherty and Hunt 2009, 
Pushpalatha et al. 2011).

Figure 7. Individual agreement indices per group (rows) and GRXJCN models (columns). Agreement indices close to 1 indicate that the choice of calibration objective 
and equifinality have little effect on the parameter values.
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Figure 8. Performance measures for basins grouped by parameter agreement groups (shown in Fig. 5), for the three GRXNCN hydrological model configurations. All 
metrics are computed with data available for the calibration period (1 April 1985–31 March 2005), validation period No. 1 (1 April 2005–31 March 2010), and validation 
period No. 2 (1 April 2010–31 March 2017).
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5.2 Limitations and future work

The concept of an “optimal” parameter set given a hydrological 
model structure, meteorological forcings, streamflow observa-
tions and a calibration objective function mimics a generalized 
practice adopted by most water managers, who seek to max-
imize accuracy for specific streamflow characteristics (Pool et al.  
2017, Mizukami et al. 2019) in spite of the awareness that no 
single metric can capture all aspects observed in the hydrological 
system of interest (Jackson et al. 2019). Additionally, all the 
results presented here depend on the choice of the global opti-
mization algorithm. Previous work suggests that SCE-UA yields 
stable results for models with a low-dimensional parameter 
space (Arsenault et al. 2014), and that is less sensitive to the 
seed number and the choice of parameter bounds (Abdulla et al.  
1999) than other algorithms are. Nevertheless, other studies 
have reported difficulties in finding a unique optimal solution 
(Demirel et al. 2018, Nemri and Kinnard 2020), which moti-
vated the incorporation of equifinal parameter sets in our for-
mulation of parameter agreement.

It should be noted that, in addition to calibration metric 
selection, many more methodological decisions challenge the 
identification of parameter values, including the choice of input 
forcing dataset (Elsner et al. 2014), calibration period (Merz 
et al. 2011, Coron et al. 2012, Osuch et al. 2015), the parameters 
included in the calibration process (Newman et al. 2017), the 
parameter search strategy (Sorooshian and Gupta 1983, Abdulla 
et al. 1999, Nemri and Kinnard 2020), data errors (e.g. Coxon 
et al. 2015), the quantity of data (Anctil et al. 2004), and model 
structural deficiencies in the equation structure of conceptual 
models (Sorooshian and Gupta 1983). In particular, the hydro-
logical model structure, input forcings, and error properties in 
the model and observations have been identified as the main 
contributors to parameter non-uniqueness (Guillaume et al.  
2019). The parameter identifiability problem has been 
approached by many authors over the past several decades 
(Sorooshian and Gupta 1983, Wagener et al. 2003, Doherty 
and Hunt 2009, Guse et al. 2020) and it is not our intention to 
conduct formal identifiability analyses; rather, we intend to 
characterize the implications of calibration metric selection for 
parameter values across a large sample of catchments.

We decided to use the family of GR hydrological models 
because of their simplicity and flexibility to conduct controlled 
experiments with increasing complexity, although other flexible 
platforms with many more modelling alternatives could be 
explored (Clark et al. 2008, Fenicia et al. 2011, Knoben et al.  
2019). Additionally, we did not characterize variations in para-
meter agreement under calibration periods with different hydro-
climatic conditions (Merz et al. 2011). Future work could also 
examine to what extent the choice of calibration metric translates 
into temporally stable hydrological consistency, which could be 
assessed through hydrological signatures (Addor et al. 2018), flux 
mapping (Khatami et al. 2019), and/or satellite products (Nijzink 
et al. 2018) under contrasting climatic conditions.

We hypothesize that similar results would be obtained if 
more complex modular platforms are used, either with con-
ceptual, bucket-style models (Clark et al. 2008, Knoben et al.  
2019) or with physically-based models (Niu et al. 2011, Clark 
et al. 2015).

6 Conclusions

We have explored the implications of calibration metric selec-
tion on the dispersion of parameter values and simulated 
hydrological responses in three conceptual rainfall–runoff 
models. To this end, we configured and calibrated three hydro-
logical model structures using 12 different objective functions 
and computed a parameter agreement index that quantifies the 
degree of dispersion arising from different calibration metrics, 
considering equifinality effects. The calibration experiments 
were conducted in 95 near-natural catchments across conti-
nental Chile, which span a diverse range of physiographic and 
hydroclimatic characteristics. Possible relationships between 
parameter agreement and catchment descriptors are explored 
through correlation analysis, and a clustering exercise is per-
formed to examine whether common characteristics exist 
among catchments that exhibit high (or low) agreement in 
parameter sets. The results demonstrate that, for the selected 
model structures applied in this study, the impacts of calibra-
tion metric selection on the (dis)agreement of parameter 
values depend on physiographic and hydroclimatic catchment 
attributes. Specifically:

● Individual parameter agreement is significantly corre-
lated with some climatic (e.g. aridity index, precipitation) 
and physiographic (e.g. mean elevation, forest, and bar-
ren soil fraction) catchment descriptors.

● Slight modifications in model structure yield changes in 
spatial patterns of agreement groups and may produce 
variations in the correlation between individual para-
meter agreement and catchment attributes.

● Higher parameter agreement is obtained in wet catch-
ments (i.e. with low aridity index and high mean annual 
runoff ratio) compared to dry or semi-arid basins.

● Catchments with high (low) parameter agreement gen-
erally yield an overall better (worse) model performance 
for the metrics analysed here, in both the calibration 
period and two independent validation periods.

The results obtained in this study suggest that wet climates 
with little precipitation seasonality and low probability of 
snowfall favour conditions for parameter agreement, which 
means that, in these catchments, it is more likely to find sub- 
domains in the parameter space that reproduce multiple 
streamflow characteristics and are therefore suitable for 
multiple water resources applications. Conversely, arid and 
semi-arid catchments where snow is a key component are 
generally more challenging, mainly because parameters in 
degree-day models are more difficult to identify. More gen-
erally, the results presented here suggest that the identifica-
tion of multi-purpose parameter sets in conceptual, bucket- 
style rainfall–runoff models is more challenging under dry 
climatic conditions. However, further work with more com-
plex model structures and even more calibration metrics – 
that aim at evaluating models for other fluxes and/or states 
than streamflow – is needed to test such hypotheses.

Finally, our study provides a benchmark for hydrological 
characterizations in near-natural catchments across continen-
tal Chile, enabling the assessment of (i) additional sources of 
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information (e.g. MODIS, Landsat, Soil Moisture Active 
Passive (SMAP), Soil Moisture and Ocean Salinity (SMOS)) 
to constrain the parameter space; (ii) alternative parameter 
estimation strategies; and (iii) using more complex models to 
improve hydrological consistency.
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