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Abstract 

The development of automated (computer-based) calibration methods has focused mainly on the selection of a single- 
objective measure of the distance between the model-simulated output and the data and the selection of an automatic 
optimization algorithm to search for the parameter values which minimize that distance. However, practical experience 
with model calibration suggests that no single-objective function is adequate to measure the ways in which the model fails 
to match the important characteristics of the observed data. Given that some of the latest hydrologic models simulate several 
of the watershed output fluxes (e.g. water, energy, chemical constituents, etc.), there is a need for effective and efficient multi- 
objective calibration procedures capable of exploiting all of the useful information about the physical system contained in the 
measurement data time series. The MOCOM-UA algorithm, an effective and efficient methodology for solving the multiple- 
objective global optimization problem, is presented in this paper. The method is an extension of the successful SCE-UA 
single-objective global optimization algorithm. The features and capabilities of MOCOM-UA are illustrated by means of a 
simple hydrologic model calibration study. © 1998 Elsevier Science B.V. 
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1. Introduct ion and scope 

To calibrate a hydrologic model, the hydrologist  
must specify values for its "pa r ame te r s "  in such a 
way that the mode l ' s  behavior  closely matches that 
of  the real system it represents. In some cases, the 
appropriate values for a model  parameter  can be 
determined through direct measurements conducted 
on the real system. However,  in a great many situa- 
tions, the model  parameters are conceptual represen- 
tations o f  abstract watershed characteristics and must 
be determined through a tr ial-and-error process which 
adjusts the parameter  values so that the model  
response matches the historical input -output  data. 

Because o f  the t ime-consuming nature o f  manual 
tr ial-and-error model  calibration, there has been a 
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great deal of  research into the development o f  auto- 
mated (computer-based) calibration methods (see, 
e.g., Gupta and Sorooshian, 1994). These efforts 
have focused mainly on the selection o f  a single- 
objective measure o f  the distance between the 
model-s imulated output and the data and the selection 
o f  an automatic optimization algorithm to search for 
the parameter  values which minimize that distance. 
Objective functions that have been shown to work 
well  in practice include the Mean Squared-Error Esti- 
mator (MSE) and the Heteroscedastic Maximum 
Likel ihood Estimator (HMLE) criterion (Sorooshian 
and Dracup, 1980). Research into optimization 
methods has led to the use o f  population-evolution- 
based search strategies (e.g. Brazil and Krajewski,  
1987; Brazil, 1988; Wang, 1991; Duan et al., 1992, 
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1993; Sorooshian et al., 1993; among others). In this 
regard, the Shuffled Complex Evolution (SCE-UA) 
global optimization algorithm has been found to be 
consistent, effective, and efficient in locating the 
globally optimal model parameters of a hydrologic 
model with respect to a given objective function 
(Duan et al., 1992, 1993; Sorooshian et al., 1993; 
Luce and Cundy, 1994; Gan and Biftu, 1996; Tana- 
kamaru, 1995; Tanakamaru and Burges, 1996, among 
others). 

Practical experience with model calibration sug- 
gests that any single-objective function, no matter 
how carefully chosen, may not adequately measure 
the ways in which the model fails to match the impor- 
tant characteristics of the observed data. This is 
reflected in the fact that the U.S. National Weather 
Service typically uses as many as 10 different objec- 
tive functions to measure the goodness-of-fit of  the 
Sacramento Soil Moisture Accounting model (SAC- 
SMA) during a multi-stage semi-automated calibra- 
tion procedure (Brazil, 1988). Further, many of the 
latest hydrologic models simulate several of the 
watershed output fluxes (e.g. water, energy, chemical 
constituents, etc.) for which measurement data are 
available, and all these data must be properly utilized 
to ensure proper model calibration (e.g. Beven and 
Kirkby, 1979; De Grosbois et al., 1988; Kuczera, 
1982 Kuczera, 1983; Woolhiser et al., 1990; Yan 
and Haan, 1991 a, b). In particular, watershed hydro- 
chemical models may simulate several physical and 
chemical properties of the hydrograph, in addition to 
the rate of flow (Wolford and Bales, 1996), while 
land-surface hydrology models designed for coupling 
with General Circulation Models typically simulate 
several energy and water fluxes and state variables 
including latent heat, sensible heat, temperature, run- 
off, and soil moisture at various depths (Dickinson et 
al., 1993). Because many of these models employ 
distributed representations of the watershed, the 
state variables and output fluxes may also be simu- 
lated and measured at numerous locations. 

Procedures for the proper calibration of complex 
hydrologic models must effectively and efficiently 
utilize the various measurement data time series that 
provide useful information about the physical system. 
In Gupta et al. (1997), the advantages of a multiple- 
objective representation of the model calibration pro- 
blem were discussed, and this representation was 

shown to be applicable and desirable, even in the 
case of the classical single-output-flux hydrological 
model. In this paper, an effective and efficient meth- 
odology for solving the multiple-objective global 
optimization problem is presented, and its features 
and capabilities are demonstrated by means of a 
simple example. 

2. The multi-objective calibration problem 

2.1. Formulat ion  

The multi-objective hydrologic model calibration 
problem can be stated as the optimization problem: 

minimize F(O) = {fl (0) . . . . .  fm(O)} (1) 
w.r.t 0 

where f l (O) . . . .  fro(0) are the m non-commensurable 
objective functions to be simultaneously minimized 
with respect to the parameters 0 of the model. For 
example, each f/(0) might correspond to least-squares 
matching of a particular model output flux to the 
available data on that flux. The multi-objective for- 
mulation has its foundations in 18 th century econ- 
omics and philosophical discussion of welfare 
theories and competitive equilibrium (Edgeworth, 
1881; Arrow, 1968; Pareto, 1971). It was introduced 
into mathematics by Cantor (1895, 1897) and has 
since evolved into a well-established mathematical 
discipline (Kuhn and Tucker, 1951; Hurwicz, 1958) 
that has been applied to several fields, including 
game theory (e.g. von Neumann, 1928; Borel, 
1953), production theory (e.g. Koopmans, 1951), 
engineering (e.g. Stadler, 1984a, b; Zadeh, 1963), 
and quite extensively in water resources (e.g. Mar- 
glin, 1967). A detailed historical retrospect on multi- 
objective optimization can be found in Stadler 
(1986). 

2.2. Pare to  opt imali ty  

The overriding characteristic of a multi-objective 
problem is that the solution will not, in general, be 
unique. In fact, it is common to have several solutions 
with the property that moving from one solution to 
another results in the improvement of one objective 
function while causing a deterioration in the value of 
at least one other objective function. Fig. 1 illustrates 
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Fig. 1. Illustration of Pareto optimality. 

this for a simple problem where two objectives 0cJ2) 
are to be minimized with respect to two parameters 
(Xl,X2). In Fig. l(a), point A indicates the parameters 
(X~l,X A) that minimize function f l ,  while point B 

B B indicates the parameters (xl, x2 ) that minimize func- 
tion f2. The solution to the multi-objective problem 
consists of  all the points falling on the line joining A 
and 13. These points have the characteristic that 
moving along the line from points A to B results in 
successively larger values of  f l  and successively 
smaller values off2 (see Fig. l(b)). Because the indi- 
vidual objectives are non-commensurate (each func- 
tion is its own entity), it is not possible to determine 
objectively among such solutions which one is the 
best, and such solutions are called Pareto, non- 
dominated, non-inferior, or efficient solutions. 

The formulation presented above divides the 
feasible parameter space into two parts: the part con- 
sisting of all Pareto solutions 0p is called the Pareto 
set, and the part consisting of the remaining space 
(non-Pareto solutions 0d) is called the dominated set. 
By definition, any member 0p of the Pareto set has the 
properties that: 

1. F(0p) is strictly less than F(Oa) for all members 0d 
not contained in the Pareto set; i.e. {f~(0p) <fi(0d), 
for i = 1 ..... m} 

2. It is not possible to find a 0p within the Pareto set 
such that F(Op) is strictly less than F(0p). 

Put simply, the first of these statements says that the 
feasible parameter space can be partitioned into 
"good"  solutions (Pareto solutions) and " b a d "  

solutions. The second says that, in the absence of 
additional information, it is not possible to distinguish 
any one of the "good"  (Pareto) solutions as being 
objectively better than any of the other "good"  solu- 
tions (i.e. there is no uniquely "bes t "  solution). For a 
formal definition of Pareto optimality, please refer to 
Vincent and Grantham ( 1981). 

While it may be relatively simple to state the multi- 
objective optimization problem as in Eq. (1), solving 
it to identify the Pareto set is not easy and has been the 
subject of  much research. While explicit analytic 
solutions to the Pareto set can be derived for simple 
problems (Vincent and Grantham, 1981), this is 
typically not possible for many practical problems 
and, in general, only an approximation of the Pareto 
set by a finite number of  solutions can be obtained. 
Several methods for the generation of solutions that 
sample the Pareto set have been proposed, two of the 
more popular ones being the weighing method 
(Zadeh, 1963; Goicoechea et al., 1982) and the e- 
constraint method (Marglin, 1967; Cohon and 
Marks, 1975; Szidarovszky et al., 1986). Some 
methods attempt to generate only the Pareto subset 
of  interest to a decision maker. Such methods are 
usually interactive; e.g. the tradeoff development 
method (Trade) of  Goicoechea et al. (1976) and the 
Surrogate Worth Tradeoff (SWT) method of Haimes 
et al. (1975). Other methods require choosing a solu- 
tion among several alternatives; e.g. compromise pro- 
gramming and goal programming. Descriptions of  
these methods can be found in Harboe (1992) and 
Goicoechea et al. (1982), among others. 
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2.3. Limitations of  classical solution methods 

The major strength of the classical "generating" 
methods that attempt to sample the entire Pareto set is 
that they have the potential to provide "global" solu- 
tions to the multi-objective optimization problem (just 
as in single-objective optimization, it is possible for 
local Pareto solutions to coexist with global Pareto 
solutions). However, a major weakness of these tech- 
niques arises in their strategy of converting the multi- 
objective optimization problem into a large number of 
single-objective optimization problems. For problems 
with a large number of objectives, the computational 
burden grows rapidly (at an exponential rate). The 
task of estimating the entire Pareto set becomes 
inefficient, cumbersome, and time consuming. 
Further, such methods find it difficult to generate 
solutions at the boundary of the Pareto set. In contrast, 
the strength of interactive methods is that they gen- 
erate only a relatively small number of efficient solu- 
tions by moving from one feasible solution to the next 
using subjective articulation of preference among the 
different objectives. However, such methods may fail 
to explore the entire feasible space and therefore not 
arrive at a "global"  solution (the final solution may 
depend on the initial point used in the procedure). 

2.4. Discussion 

The classical strategies used to solve the multi- 
objective optimization problem are, in principle, 
quite similar to the strategies used in single-objective 
optimization. The generating technique is similar to 
"global random search", and the interactive approach 
is similar to "local deterministic search". Therefore, 
it is not surprising that these multi-objective tech- 
niques have strengths and weaknesses which are 
similar to those of their single-objective counterparts 
(for a discussion of single-objective approaches, see 
Duan et al., 1992). Among single-objective approaches, 
a recent development is the strategy of "population 
evolution", which draws on the strengths of both 
random and deterministic methods to achieve, in a 
synergistic fashion, both global search ability and 
rapid convergence. Examples of population evolution 
strategies are the Genetic Algorithm (Holland, 1975) 
and the SCE-UA algorithm (Duan et al., 1992). 

Because population-based strategies achieve their 

performance by the simultaneous evolution of 
numerous potential solutions towards the region of 
the global optimum, they are ideally suited to solving 
for the Pareto solution set of a multi-objective pro- 
blem. In principle, multi-objective versions of such 
strategies would be able to search for an approximate 
representation of the Pareto set in a single optimiza- 
tion run. With this aim in mind, we have developed an 
algorithm entitled the Multi-Objective Complex Evo- 
lution (MOCOM-UA) method, based on extensions of 
the successful SCE-UA single-objective method 
previously developed by our research group. 

3. The multi-objective complex evolution 
(MOCOM-UA) global optimization method 

The MOCOM-UA method is a general-purpose 
global multi-objective optimization algorithm 
designed to be effective and efficient for a broad 
class of problems. The MOCOM-UA strategy com- 
bines the strengths "controlled random search" 
(Price, 1987) with the "competitive evolution" 
(Holland, 1975), Pareto ranking (Goldberg, 1989), 
and a newly developed strategy of multi-objective 
downhill simplex search. Although the complex shuf- 
fling strategy implemented in the SCE-UA method 
has some inherent strengths (improved global search 
and better computational efficiency) that are desirable 
in a population-based method, it has not yet been 
implemented into the algorithm. The essence of the 
MOCOM-UA method is described below; detailed 
descriptions and explanations appear in Yapo (1996). 

The MOCOM-UA strategy is illustrated in Figs. 2 
and 3. We begin with an initial sample of s points 
distributed randomly throughout the n-dimensional 
feasible parameter space U°(0) that represents the 
initial parameter uncertainty. In the absence of prior 
information about the location of the Pareto optimum, 
a uniform sampling distribution is used. For each 
point, the multi-objective vector F(O) is computed, 
and the population is ranked and sorted using a 
Pareto-ranking procedure suggested by Goldberg 
(1989) (see discussion in next subsection). Simplexes 
of n + 1 points are then selected from the sample 
according to a robust rank-based selection method 
(Whitley, 1989). Each simplex is evolved in an 
improvement direction using a multi-objective 
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Complex Evolution I 

I 
Fig. 2. Flow chart of the MOCOM-UA algorithm. 

extension of the downhill simplex search strategy. 
The evolution process produces new points, the off- 
spring, that are on average better than the original 
points, the parents. Iterative application of the ranking 

and evolution procedures causes the population to 
converge towards the Pareto set. The procedure ter- 
minates automatically when all points in the sample 
become mutually non-dominated. 
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Fig .  3. C o m p l e x  e v o l u t i o n  s t r a t egy  in M O C O M - U A .  

Like the SCE-UA method, MOCOM-UA treats the 
global search as a process of  natural evolution. The s 
sampled points constitute a population. Each member 
of  the population is a potential parent with the ability 
to participate in a process of  reproduction. A simplex 
selected from the population is like a pair of  parents, 
except that a simplex contains more than two 
members (except in the trivial case that n = 1). To 
ensure that the evolution process is competitive, we 
require that the probability that "bet ter"  parents con- 
tribute to the generation of offspring is higher than 
that of  "worse"  parents. The use of  a triangular prob- 
ability distribution for parent selection ensures this 
competitiveness. The multi-objective simplex strat- 
egy is applied to each simplex to generate the off- 

spring. The information contained in the simplex is 
used to direct the evolution in an improvement direc- 
tion. Each new offspring replaces the worst point of  
the current subcomplex. This ensures that each parent 
gets at least one chance to contribute to the reproduc- 
tion process before being replaced or discarded; thus, 
none of the information in the sample is ignored. 

3.1. Pareto ranking 

Because in a multi-objective problem several 
objectives are to be considered simultaneously, 
ordered ranking of the population by conventional 
scalar sorting is not possible, and the concept of  
inferiority-superiority in multi-objective theory is 
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used instead. The special sorting used in MOCOM- 
UA is called "Pareto ranking" (Goldberg, 1989). The 
procedure begins by identifying all the non-dominated 
individuals in the population and assigning them the 
rank "one" .  These individuals are set aside (tem- 
porarily removed from the population), and the non- 
dominated individuals identified in the remaining 
population are assigned the rank " two" .  The process 
is repeated until every point has been assigned a rank. 
This sorting procedure essentially assigns equivalent 
rankings to all points that lie on the same Pareto 
frontier. In a population o f s  individuals, the assigned 
ranks are 1,2,3 . . . .  ,Rmax, where Rmax ~-~ S; the smallest- 
ranked individuals are closest to the Pareto optimal 
set, while the largest-ranked individuals are the 
furthest from it. 

Points marked 
for evolution 

V B (1) ] . , , ~  E (2) 

,l,,'c (1) 
D- 

F, 
Fig. 4. Illustration of  simplex selection in a two-objective problem. 

3.2. Rank-based selection 

Rank-based selection utilizes an individual's rank 
to determine its likelihood of producing offspring. In 
the SCE-UA algorithm, this is achieved by first sort- 
ing the individuals from smallest to largest function 
value and assigning to them a corresponding rank. 
Based on the individual ranks, a trapezoidal prob- 
ability mass function is assigned so that points with 
lower rank have a greater probability of selection. In a 
similar manner, MOCOM-UA utilizes a rank-based 
selection procedure that favors the selection of points 
closest to the Pareto set (smaller Pareto ranking). Let 
ri be the computed rank of point i. Assignment of  
selection probability is done by fitting the following 
probability distribution to the population: 

s 

Pi=(Rmax-r i+ l ) /  ~ (Rmax- r j+  l) 
J 

(Rmax - ri + 1 * = Rmax + 1 ) - rj (2) 

The denominator in Eq. (2) ensures that {Pi} i=l to s is a 
probability mass function (pmf) (i.e. Z~iPi = 1). It has 
been shown that rank-based selection is a more robust 
scheme than function-based selection in multi- 
objective applications (Whitley, 1989). 

3.3. Multi-objective complex evolution 

Once all individuals have been ranked, evolution 

proceeds by selecting from the population a number 
of simplexes equal to the number of points NRm,x 
which have largest rank (rank equal to {Rmax}) .  

Each simplex consists of n + 1 points, where one 
point is selected from the worst NRmax points, and the 
remaining n points are selected at random, with 
replacement, from the P-NRm~ remaining points 
according to the pmf  in Eq. (2). Fig. 4 illustrates the 
procedure of  simplex selection for a simple two- 
dimensional problem with two objectives to be 
minimized (n = 2) and a population of seven points. 
The numbers in parentheses next to each point indi- 
cate its Pareto rank; points A, B, and C are of  rank 
one, points D and E are of  rank two, and points F and 
G are of  rank three (Rma  x = 3) .  Because there are two 
points with worst rank, we form two simplexes for 
evolution. Each simplex contains one of the worst- 
ranked points and two (n) of  the better-ranked points. 
Although the simplexes shown in this illustration have 
no points in common, in practice, the simplexes can 
share better-ranked points. 

This strategy for simplex generation allows the 
worst points to be identified by a global ranking of 
the population (instead of a local ranking of the sim- 
plex) and determines global improvement directions. 
Because the simplexes are evolved independently of  
each other, the evolution procedure is well suited for 
parallel processing with its advantages of  significantly 
reduced computer execution time. 

When  all simplexes have been evolved exactly 
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Fig. 5. Illustration of the multi-objective simplex (MOSIM) procedure: (a) parameter space, and (b) objective space. 

once, the new points replace all worst points in the 
original population, thus creating a new population 
also called the next generation. All points that are 
ranked better than Rma x in the previous population 
are passed unchanged onto the next generation. The 
new population is then re-sorted by way of Pareto 
ranking. The steps of  Pareto ranking, simplex genera- 
tion, and simplex evolution constitute a main loop of 
the MOCOM algorithm; iteration through these steps 
evolves the population in the direction of the global 
Pareto optimal set. The algorithm terminates, in a 
natural manner, when all points in the population 
have rank equal to one (i.e. there exist no inferior 
points in the population), which indicates that no 
further global directions of  improvement can be 
found by this strategy. 

3.4. Multi-objective downhill simplex evolution 
(MOSIM) 

The evolution procedure used to improve the worst 
point is a multi-objective extension of the downhill 
simplex method (Nelder and Mead, 1965) and is 
therefore named MOSIM. The MOSIM method 
generates a new point that replaces the point in the 
simplex which has worst global rank. The new point is 
generated by the application of  two operations, 
namely reflection and contraction, to the simplex as 

follows: 

Snew ='7Sg + (1 - T ) S w  (3) 

where Sne w is the new point, Sw is the worst ranked 
point in the simplex, and Sg is the location of the 
centroid of  the n better ranked points in the simplex. 
When 3' = 2, a reflection step is obtained and, when 3' 
= 0.5, a contraction step is obtained. 

The rule for choosing either the reflection (Srer) or 
contraction (Soon) point is based on the concept of  
multi-objective dominance. The reflection point Srer 
is accepted if (and only if) it is non-dominated with 
respect to the n points that were used to compute the 
centroid. However, if  the reflection point is found to 
be dominated, it is rejected, and the contraction point 
Sco, is accepted instead. This process causes each sim- 
plex to evolve exactly once and produce a single off- 
spring. 

An illustration of the MOSIM procedure for a two- 
objective (FI,F2) problem with two parameters is 
shown in Fig. 5. The objectives to be minimized are 
quadratic functions centered at (0,0) and (1,0) and 
represented by the contour lines in Fig. 5(a); the 
solid contour lines correspond to Ft, and the dashed 
contour lines correspond to F2. The Pareto set is 
indicated by the thick gray line. Given the simplex 
{abc}, a reflection step is attempted first; the 
reflection is rejected because it is dominated by 
point {a} (Fig. 5(b)). The contraction point is then 
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automatically accepted and replaces point {c} in the 
original simplex. 

3.5. Simple illustration of MOCOM-UA evolution 

The progression of the MOCOM-UA algorithm is 
illustrated in Fig. 6 for the simple two-dimensional 
two-objective (two quadratic functions) problem of 
Fig. 5. In Fig. 6(a) and (b), an initial population of 
30 randomly selected individuals in the feasible space 
is shown. The four black dots indicate non-dominated 
points, while the 26 circles denote dominated points. 
After one loop (Fig. 6(c) and (d)), there are seven non- 
dominated individuals (black dots). With successive 
loops, the Pareto front approximated by the black dots 
"close in" on the true Pareto set in both parameter 
and objective space. The final points are all mutually 
non-dominated and provide a close approximation of 
the Pareto region (Fig. 6(e)) and the tradeoff curve 
(Fig. 6(t)). 

4. Calibration of a hydrologic model 

4.1. The model and data 

The application of the MOCOM-UA algorithm to 
hydrologic modeling is illustrated by using it to cali- 
brate the Sacramento Soil Moisture Accounting 
model (SAC-SMA) of the National Weather Service 
River Forecasting System (NWSRFS) using historical 
data from the Leaf River watershed (1950km 2) 
located north of Collins, Mississippi. A reliable 40- 
water-year data set that represents a variety of hydro- 
logical conditions and phenomena is available for this 
watershed. The SAC-SMA model is a conceptual 
rainfall-runoff model with 13 parameters to be deter- 
mined by the process of calibration. Although 
approximately eight consecutive relatively wet water 
years of daily data are required to ensure reliability of 
the parameter estimates (Yapo et al., 1996), the illus- 
trative study presented here uses only a one year cali- 
bration period consisting of the wettest water-year on 
record (October 1, 1979 to September 30, 1980), i.e. 
the year with the largest mean annual flow. Because 
the SAC-SMA model and the Leaf River data have 
been discussed extensively in previous work (e.g. 
Burnash et al., 1973; Peck, 1976; Kitanidis and 

Bras, 1980a, b; Brazil and Hudlow, 1981; Brazil, 
1988; Sorooshian and Gupta, 1985; Sorooshian et 
al., 1982, 1983, 1993; Duan et al., 1993, 1994; and 
Yapo et al., 1996), the details of these will not be 
described here. 

4.2. Objective functions 

Automatic calibration procedures typically require 
the selection of a single-objective function for opti- 
mization in order to identify the best set of model 
parameters. This implies proper choice of an objective 
function. For hydrological model calibration, the 
objective function can be chosen to match some 
assumption regarding the distribution of the errors 
present in the observed data. For instance, the 
DRMS criterion: 

minimize DRMS(0)= ~ /1  ,~ [q~im(O)_qtbS]2 (4) 
0 v n t = l  

is the unbiased, minimum variance estimator, and it is 
the Maximum Likelihood Estimator under the 
assumption that measurement errors, approximated 
by et = q~im-qtbS, are normally distributed with 
zero mean and constant variance a 2. Similarly, the 
HMLE criterion: 

_ n sire obs 2 1 Xwt(X)[q, (O)-qt ] 
minimize HMLE(0, ~.) = n t= 1 

(5) 

is the Maximum Likelihood Estimator under the 
assumption that the measurement errors are normally 
distributed with zero mean but having heteroscedastic 
(non-stationary) variance a 2 proportional to the 
observed flows (Sorooshian and Dracup, 1980). The 
weights are computed from the relationship 
wt(~,)=f 2~x-l), where f~ is the expected value of 

obs qt . Sorooshian and Dracup (1980) suggested using 
ft =q~im; however, it has been our experience that, in 

~ t, obs practice, the use o r j t=q t  results in a more stable 
estimator. 

In previous work (Yapo et al., 1996), we have 
shown that these two objective functions tend to pro- 
vide different parameter estimates which result in dif- 
ferent simulated hydrographs. The DRMS criterion 
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tends to emphasize minimization of peak flow error, 
while the the HMLE tends to provide more consistent 
performance across all flow ranges. In this study, we 
calibrated the SAC-SMA model using these two 
objective functions simultaneously in a multi- 
objective context and solving for the Pareto solution 
set using the MOCOM-UA algorithm. The multi- 
objective problem was defined as: 

minimize F=(DRMS, HMLE) (6) 
(0, x) 

4.3. Calibration results 

A population size of 500 was used to estimate the 
Pareto solution set with respect to the 13 model para- 
meters. The algorithm required 68 890 function evalu- 
ations to converge to a solution. The results of this 

study are presented in Figs. 7 and 8. A linear-linear 
plot of the Pareto solutions in the DRMS versus 
HMLE objective function space is given in Fig. 
7(a). Notice that the MOCOM-UA algorithm has gen- 
erated a uniform set of solutions spanning the Pareto 
space. The tradeoff between the two objectives is 
clearly illustrated: within the Pareto region, an 
improvement in one objective is obtained only at the 
expense of the other. For clarity, the 10 best DRMS 
and HMLE solutions are highlighted with different 
colored shading. A plot of the corresponding para- 
meter sets is illustrated in Fig. 7(b). It is encouraging 
that the Pareto solutions tend to cluster closely in the 
parameter space. However, certain parameters 
(notably PCTIM, LZTWM, LZPK, LZSK, and 
PFREE) tend to be different for the two objectives; 
these parameters play a primary role in determining 
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the shape of  the hydrograph during recession 
(between storm) periods. A log scale plot of the 
observed hydrographs (circles) and the hydrograph 
uncertainty (shaded area) associated with the Pareto 
solution set is displayed in Fig. 8. The larger relative 
uncertainty found during low flow and recession 
periods is consistent with the relative uncertainty in 

the parameters mentioned above. Notice also that the 
hydrograph uncertainty ranges do no t  bracket the 
observed flows during the low flow and recession 
periods, while the matching for medium and high 
flow events is very good. Clearly, the SAC-SMA 
model, as calibrated here, is better able to reproduce 
storm period flows than recession period flows, and 

118 

uJ 
._1 

'T" 

2000 

25 

11 

~, 1000 

DRMS 

Fig. 9. Sensitivity of solution to population size. 

31 



P.O. Yapo et al./Journal of  Hydrology 204 (1998) 83-97 95 

these results may point towards aspects of  the model 
and/or the calibration procedure that need to be 
further refined. We stress the illustrative nature of 
this study; clearly, issues such as the proper choice 
of objective functions for use in the multi-objective 
context need to be addressed before any conclusions 
regarding the model itself can be derived. 

4.4. Sensitivity of  the results to population s&e 

The only MOCOM-UA algorithm parameter that 
must be specified by the user is s: the population 
size. To study the sensitivity of the calibration 
results to population size, we conducted a series 
of optimization runs in which all the conditions 
were identical, except that the population size was 
varied as s = 50, 100, 200, 500, 1000, and 2000. 
The final results, shown as a linear-linear plot in 
the objective space (DRMS versus HMLE) in Fig. 9, 
indicate that: 

1. The Pareto front moves closer to the origin, indi- 
cating improvement in the results as the popula- 
tion size increases. 

2. The improvement is significant as s increases from 
50 to 1000 points; however, the benefit of  going 
from 1000 to 2000 can be considered to be mar- 
ginal, given the order of  magnitude increase in 
number of function evaluations (from 265 124 to 
2 819 128). 

3. The populations seem to span the Pareto front 
evenly. 

4. The result obtained with 500 points approximates 
the best solution (2000 points) over most of  the 
Pareto frontier, except at the lowest DRMS values. 
This supports the findings of  Sorooshian and 
Dracup (1980) and Sorooshian and Gupta (1983) 
that the response surface associated with HMLE 
is smoother and better behaved than that of  
DRMS. 

These results suggest that a population size of only 
500 to 1000 is required to guarantee a reliable esti- 
mate of  the Pareto front. This is encouraging because 
the number of  required function evaluations increases 
dramatically (by a factor of  10) from a relatively 
reasonable 265 124 for s = 1000 to 2 819 128 for s = 
2000. 

5. Conclusions 

Research into the development of automated 
(computer-based) calibration methods has focused 
mainly on the selection of a single-objective measure 
of  the distance between the model-simulated output and 
the data and the selection of an automatic optimization 
algorithm to search for the parameter values which 
minimize that distance. However, practical experience 
with model calibration suggests that no single-objective 
function is adequate to measure the ways in which the 
model fails to match the important characteristics of  the 
observed data. Given that many of the latest hydrologic 
models simulate several of  the watershed output fluxes 
(e.g. water, energy, chemical constituents, etc.), there is 
a need for effective and efficient multi-objective cali- 
bration procedures which are capable of  exploiting all 
of the useful information about the physical system 
contained in the measurement data time series. 

In this paper, we have presented an effective and 
efficient methodology for solving the multiple- 
objective global optimization problem and demon- 
strated its features and capabilities by a simple 
example involving calibration of a conceptual rainfall- 
runoff model using two objectives. The MOCOM-UA 
multi-objective optimization method is relatively 
simple to implement. However, further research into a 
number of  theoretical and experimental issues related to 
its application in hydrologic model calibration are 
ongoing. These include: (1) the proper manner for 
selecting the set of objective functions, and (2) the sen- 
sitivity of the results to number of  objective functions 
and amount of  data. In collaboration with colleagues, 
the MOCOM-UA approach is currently being applied 
to some of the more sophisticated physically based 
hydrologic models such as soil-vegetation transfer 
schemes and hydrochemical watershed models. The 
results of these studies will be reported in due course. 
We welcome dialogue on these and other ideas related to 
hydrologic model calibration. The code for the 
MOCOM multi-objective optimization algorithm is 
available from the second author by request (send 
email to hoshin@hwr.arizona.edu). 
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