

PAUTA AUX 1.

introducción al Laturo Primavera 2024 Sección 3

Ygnacio Dagach Alouga HAS.

IMPORTANTE:

Junto al HOW to:

en el trow to están las explicaciones a todos los prime ros

pasos de los exercicios tipo P2 y P3.

EN el desarrollo

de la PAUTA SE ASUMIRA VACEN los ejercicios Junto al How To-

ramo: INTRODUCCIÓN AL CÁLWIO fecha:
Manacio Dayach Hougattas s: PAUTA Pla DDQ: OF INVERSO aditivo ex Will. wnth Diccion, dado que la existencia RAIANTIZADA POR TEOREMA DE PRISTENCIA.
SUPONDAMOS EXISTE MAS DE 1 PLEVENTO
NOUTRO Y HEYATEMOS À UNA MONTRADICCION. (UtilizArewos n=2 elew. neutros puer aparece IA contradicción, y en el caso n>2 particularmente (no.) 2 elem neutros llegando igualmente o la contradicción) sean of ser eleventos neutros tales que exter => (DINO ex y ex son even. neutros 4 xeR x.e.= x , 4xeR, x.e2=x weyp tomando x= ez en (1) Feveros que: 1 e1 e2 = e1 esto, usando ax de conjuitatividad സവ N9 concluyendo gue 22 = el . e2 = e1. e2 = e1 con lo gue ez= C Objeniendo la contradicción con (3) concluyendo sue mo Riede haber + de 1 elek. Neutro y dado que tenenos la existencia por teo. E concluye la unicidad

ramo:	El inverso multiplicativo es único Sieupre que lenga Lentido
BAFJO.	el hismo Argumento a P1.a)
Suponya distinto	IWS existen 2 eleventos inversos es de algún real x =0, sean estos:
71, 72	€ R
WWO	SALDEMOS X·PI = 1 (1)
	$\times \cdot \mathcal{P}_2 = 1$ (2)
=> P ₁ =	P1 · (X · P2) (2) (P1 · X) · P2
(onclu)	yendo que Pa = P2 so el mismo Arguvento
U	U
	a P1.a) se concluye micidad del elevento inverso

$\mathbf{A1}[\ 3 \in \Theta, 7 \notin \Theta] \mathbf{A2}[\ x \in \Theta \implies 3x + 1 \in \Theta] \mathbf{A3}[\ x, y \in \Theta \implies x + y \in \Theta]$
Demuestre, justificando cada paso, que:
i) 1 ∉ Θ
ii) $x, y \in \Theta \implies 3x + 2y + 4 \in \Theta$
iii) $x, y \in \Theta \implies 4 - x - y \notin \Theta$
iv) $3x + y + 4 \notin \Theta \implies x \notin \Theta \vee \frac{y}{2} \notin \Theta$
v) No existe un $x \in \Theta$ tal que $3(2x-1)=39$
P/ b : 1
Como solo tenemos información cuando un elemento PERTENECE a
Theta, procederemos por contradicción para ojalá tener un poco más de
info (FNP)
Si 1 E D, PDR AX 3, 3.1+1 = 3 + 1 = 4 E D
5; 4 e @ , WW 3 € (#) POR AX 1; 4 + 3 = 7 € @ POR AX 3
Llegando a la contradicción con el AX1 que establece que 7 NO PERTENECE a Theta,
demostrando lo pedido
PAbii
si XEO, POT AX2, 3X+1EO.
6000 3 c @ for AX1, for AX3, [3x+1]+3 c (4)
=> [3×+1]+3 e (1) Pero [3×+1]+3= 3×+[1+3] = 3×+4
12/1/13 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
=> 3X+4 E Q (k)
_
(OMO 4 E Q) POR AX3, 4+4 = 24 E Q
3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
lueyo, cono 3x+4, 2y & @, Por AX3, [3X+4]+24
Tax utto ASOC ax tu out
Peno [3x+4]+2y= 3x+[4+2y]
0AM 27/ 150 117
= 3x + [2y + 9]
2
$= 3X + 2y + 4 \cdot concwyendo.$
X h iv Tal y como en (P2,b,i), solo tenemos información cuando elementos
pertenecen a Theta, por lo que procederemos por contrarecíproca, es decir :
PDQ (X¢@ v ½¢@) => (3x+y+4 ¢@) 60 que es PDQ x, ½€@ => 3x+y+4€@
el desarrollo queda propuesto. Hint: ver (P1,b,ii)

b) Sea $\Theta \subseteq \mathbb{R}$ un conjunto regido por los sigueinte axiomas:

iii)
$$x, y \in \Theta \implies 4 - x - y \notin \Theta$$

Nuevamentente, como solo tenemos info cuando elementos pertenecen a Theta,

vamos por contradicción decir:

Supongamos que $X, y \in \Theta \land \forall -x - y \in \Theta$ es cierto para obtener una contradicción

lueyo, Para cer mas claros:

$$[4-x-y]+y = [(4-x)-y]+y$$

$$=) (4-X) + X = 4 + ((-x) + X)$$

Ahora, si 4 PERTENECE a Theta llegamos a una contradicción, (ver partes anteriores), por lo que hemos demostrado lo pedido

v) No existe un $x \in \Theta$ tal que 3(2x - 1) = 39

Como siempre con estos enunciados, vamos por contradicción, es decir, Supongamos existe un x en Theta tal que 3(2x-1)=39 y esperemos llegar a una contradicción

Si ese x existeriera, el lado izquierdo guedaría:

$$3(2x-1) := 3(2x + (-1))$$

= 3(2x) + 3(-1) Distrib. =(3*2)x + (-1)3 ASOC 4 On M

$$=6x + (-3)$$
 $+ (-3) + 6x$ $+ (-3) + 6x$

Que por defición de diferencia (pág 8 del apunte) es equivalente a :

$$6x = 39 - (-3) := 39 + (-(-3)) = 39 + 3 = 42$$

Lo que implica que:

(-3) + 6x = 39

$$6x = 42$$

que por defición de cociente (pág 9 del apunte) es equivalente a:

$$x = 42/6 = 7$$

Con esto, como por hipótesis x PERTENECE a Theta, y como x=7, 7

PERTENECE a Theta, por lo que llegamos a la contradicción,

demostrando lo pedido.

ramo:
Demuestre, utilizando exclusivamente los axiomas de cuerpo de los reales y los teorem de unicidad de neutro e inversos, que:
724 a) ∀x ∈ ℝ, x · 0 = 0
b) $\forall x \in \mathbb{R}, (-1) \cdot x = -x$
c) $\forall x \in \mathbb{R}^*, (-x)^{-1} = -(x^{-1})$
$\mathbf{u}) \ \forall x, y \in \mathbb{R}, xy = 0 \implies x = 0 \ \forall y = 0$
$X + X \circ O = X$ Q here $\text{e) } \forall a, c \in \mathbb{R}, \forall b, d \in \mathbb{R}^*, a(b+d) = b(a+c) \Rightarrow ab^{-1} = cd^{-1}$
lo pedido eves el Neutro
aditivo es vivico e laukt a 0
3.4. 1
= X + X·0
= X·1 + X·0 NOUTRO WILTPLICATION
l i de la
= X(1+0) distributivi ada
= x · 1 Neutro aditivo
= X peuto multiplicativo
· · · · · · · · · · · · · · · · · · ·
como se probó para XEIR Artitra e o
se conclute.
- W W W W
700 fxel2 (-1):x = -x
Do lath
4xer x 4 (-1).x = 0
580 XEIR
= X + (-1) · X
= X+1 + (-1)-x NOUTO WITHP.
= 1.x + (-1).x CONTONTATIO
= (1+(-1))·x distribunvidad
Cultipo ocianii: x·o =
concluyendo que (-1)·x = -x por unicialad que x
oled inv. aditivo y dado que x
osafiona and

	ramo	fecha: / /
	Demuestre, utilizando exclusivamente los axiomas de cuerpo de	los reales y los teoremas S: C: a:
	de unicidad de neutro e inversos, que: a) $\forall x \in \mathbb{R}, x \cdot 0 = 0$	
	b) $\forall x \in \mathbb{R}, (-1) \cdot x = -x$	
	c) $\forall x \in \mathbb{R}^*, (-x)^{-1} = -(x^{-1})$	
	d) $\forall x, y \in \mathbb{R}, xy = 0 \implies x = 0 \lor y = 0$	
	e) $\forall a, c \in \mathbb{R}, \forall b, d \in \mathbb{R}^*, a(b+d) = b(a+c) \implies ab^{-1} = cd^{-1}$	
1	21.c) 700 there (-x)	= -(X-1)
-	a a	
	Sea XEIR; quereluos 9	Ue -× · (-(x-1)) = 1
	PATA CONCLUIR POR	unicidad del
	inverso witiplicati	UO y dado que
	X eya Arbitrario.	os y sucio fue
	7 64 HIOTHAG:	
	(-X) · (-(X-1))	
	FL WATE WAY	
	[(-1)(x)][(-1)(x,)]	P2,6
	7	Asociativitado
)[(-1)(x)](-1)4· X-1	#200141101MMM
	710111111111111111111111111111111111111	
	7 -1	
	1 (x) · (-1) (-1) / · ×	conjuitativi dava
	1501 (11)	
	\$. 35 W 1377 Wel	asses a till da d
	1(x) [(-1)(-1)] 2 · x ,	κυμπινιμών
	r = -7 -1	
	1(x)[1]1 · X	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	$(x) \cdot x$	eleven to verileo
	4	Stocker Control
	\	inneuso mittiblic.
	PDQ (-1)(-1) = 1	
	en efecto pues (-1	1(-1) = -(-1) for P2-10
	q - (-1) = 1 Pues	
	1003	or concertatividad
	(-1) + 1 = 1 + (-1) =	0/ 4 01 10/06/17
		7 000000
	lo ANTERNOS PUES -(-1) es	el control
	UNY (V) WED TO (-1) + (-(-1)) = 0	y en Find el 1
	<u> </u>	\rightarrow
	tambien lo mace => -(-)	1) ~ 1

_	
	ramo:
	Demuestre, utilizando exclusivamente los axiomas de cuerpo de los reales y los teoremas de unicidad de neutro e inversos, que:
	a) $\forall x \in \mathbb{R}, x \cdot 0 = 0$
	b) $\forall x \in \mathbb{R}, (-1) \cdot x = -x$
	$\begin{array}{c} P2 \\ \hline \\ c) \forall x \in \mathbb{R}^*, (-x)^{-1} = -(x^{-1}) \end{array}$
	d) $\forall x, y \in \mathbb{R}, xy = 0 \implies x = 0 \lor y = 0$
	e) $\forall a, c \in \mathbb{R}, \forall y = 0 \implies x = 0 \forall y = 0$ e) $\forall a, c \in \mathbb{R}, \forall b, d \in \mathbb{R}^*, a(b+d) = b(a+c) \implies ab^{-1} = cd^{-1}$
	$e)$ $\forall a, c \in \mathbb{R}, \forall a, a \in \mathbb{R}, a(a+a) = b(a+c) \longrightarrow ab = -ca$
	SUPONYAMOS POR CONTRADICCION
	que, dados x, y e R* WATERQUIERO,
	700) Marines 11-10-11- Million-Torollock
	X·4=0 x X +0 x 4 + 0 ;
	x·y=0 x x *0 x y *0;
	(DMO X.1 = 0) (X.1) , y = 0 . y = 0
	PUBL 0. 4-1 = 0 (4-1 EXISTE PUBL YE RE)
	PUBS 0° y = 0 (y-1 existe publy y e R")
) V) 00000
	$= 0 (x \cdot y) \cdot y^{-1} = 0$
	x (u · u · 1) = O ASOCIATIVIOLOC
	X (9 - 9 - 1 - 0 - 11 / 2 0 0 11 / 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	v (1) = 0 olovento inverso
	x = 0 mutro withphicativo.
	1 1
	demostrando lo pedido
	Alchos, Il II - Albo 1-0 COMO

ramo: ANORA USTROJE	fecha: / /
P2 e) $\forall a, c \in \mathbb{R}, \forall b, a$	$a \in \mathbb{R}^*, a(b+d) = b(a+c) \implies ab^{-1} = cd^{-1}$
sean a, be 12 y c, d	= R*,
Sondanos	a(b+d)= b(a+c)
lvego	ab + ad = ba + bc
	nd + ab = 6c + ab
	ab + - (ab) = [bc+ab]+ - (ab)
ad + [16+-(ab)]= bc+[ab+-(ab
	d + 0 = bc + 0
NOTA: PECVEROLA NOTA: en cada paso	ad = bc
ANOTAY OF AXIONA	(ad)d-1 = (bc)d-1
o profiedad que Strike	
en of could	$a(dd^{-1}) = b(cd^{-1})$
hopian gormentos	$\alpha(1) = b(cd^{-1})$
(KA esta propulato	0 = b(cot-1)
TO MANO ")	=> 6-1 a = 6-1(b (cd-1))
. 0	
	=> a b = (b b) (cd-1)
	P 06 = (1) cd-1
	ab-1 = cd-1
- (ab) existe y en vinia	
	deustrando lo
Ot existe yes	e0lid0
UNICO PUBLI DE 12x	
6 51 existe y es	
Juico goes b∈R	<u> </u>

PEWERDY INS
- P2 & Nacer Joshick CONES!
$PDQ: (-(x^{-1}) + 1) \cdot x = x + (-1)$
en etecto
$(-(x^{-1})+1)\cdot X$ (P2 b)
$= ((-1)(X^{-1}) + 1) \cdot X$
$= \left(\left[-1 \right) \left(x^{-1} \right) \right] X + \left(1 \right) X \right)$
$= (-1) \left[(x^{-1}) X \right] + (1) X$
= (-1) [X (x-1)] + (1) X
= (-1) (1) $+$ (1) X
$= (-1)(\Lambda) + \chi(\Lambda)$
$=(-1)+\chi$
= X + (-1)
1/1/4
$xy^{-1} = (x^{-1}y)^{-1}$
·
<i>(⇒)</i>
$x^{-1}y(xy^{-1})=1$
en efecto pues
(x-14)(X4-1) > [4(1)]4-1
$(x^{-1}y)(xy^{-1})$ $\triangleright [y(1)]y^{-1}$
[(x-1y) x] y-1 [y] y-1
$\left[\left(\mathbf{q} \times 1 \right) \times \right] \mathbf{q}^{-1}$
[y(x-1.x)]y-1 Demostrando
[y (x.x-1)]y-1) w reconse

ramo: fecha: / /
s: c: a:
REWERDE JUSTIFICAR
PDQ 1+ (-1)-1 = 0 (D) LOS PASOS
NOS GUSTARIA QUE PROPUESTO (-1) Tuera igual a (-1). PARA
Pues AST tendiramos PRACTICAR.
$\Box 1 + (-1)^{-1} = 1 + (-1) = 0$ Por AX; OMA.
Pero la matraca lo en tan directo
=) Tratemos de vacer cosas conocidas
NOTAR que $1 = (-1)(-1)^{-1}$ (APARECE) comocido
=> desde (D)
1 + (-1)-1 = (-1)(-1)-1 + (-1)-1
=> bay muchos (-1)-1, la distreibuir!
$(-1)(-1)^{-1} + (-1)^{-1} = (-1)(-1)^{-1} + (-1)^{-1} \cdot 1$
$= (-1)(-1)^{-1} + 1 - (-1)^{-1}$
nota: si quieren usar el HowTo para esta pregunta pueden
notar que es equivalente al desarrollo anterior demostrar
que (-1) = -1. Hint: usar p2 b
= O (P2 Q)
denostrando la pedido