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Novel strategies are being researched to discover vaccines to

prevent and treat HIV-1. Non-efficacious preventative vaccine

approaches include bivalent recombinant gp120 alone, HIV

gene insertion into an Adenovirus 5 (Ad5) virus vector and the

DNA prime/Ad5 boost vaccine regimen. However, the ALVAC-

HIV prime/AIDSVAX1 B/E gp120 boost regimen showed

31.2% efficacy at 3.5 years, and is being investigated as clade

C constructs with an additional boost. Likewise, although

multiple therapeutic vaccines have failed in the past, in a non-

placebo controlled trial, a Tat vaccine demonstrated immune

cell restoration, reduction of immune activation, and reduced

HIV-1 DNA viral load. Monoclonal antibodies for passive

immunization or treatment show promise, with VRC01 entering

advanced clinical trials.
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Introduction
Despite early optimism about immunological approaches

to prevent and treat human immunodeficiency virus

(HIV), after more than three decades there are no li-

censed HIV preventative or therapeutic vaccines. This

paper outlines the path toward novel vaccine designs that

employ active and passive immunization strategies to

prevent HIV acquisition, and the efforts toward a thera-

peutic vaccine (Figure 1).
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Preventative HIV-1 vaccines
Initial HIV vaccines using recombinant envelope proteins

Following the traditional vaccine paradigm, the HIV-1

preventative vaccine field first developed over 20 differ-

ent recombinant envelope proteins from various strains in

the late 1980s to mid-1990s, hoping to induce neutralizing

antibodies to HIV. The two recombinant gp120 vaccines

tested in phase 3 were bivalent subtype B/B and bivalent

subtype B/E, but neither proved efficacious [1,2].

What emerged from early immunogenicity studies was

that although these vaccines induced both binding and

neutralizing antibodies, the latter were often limited to

the strain used in the vaccine [3]. This narrow neutraliz-

ing response is because of auto-reactivity and deletion of

the precursor B cells that lead to the development of

broadly reactive neutralizing antibodies [4]. Interestingly,

post hoc analyses suggested that persons with high levels

of blocking and binding antibodies may have had some

protection from acquisition, a finding of minimal interest

until the RV144 trial [5].

Adenovirus 5 (Ad5) vector HIV vaccine

The failure of the recombinant envelope vaccines shifted

the focus to immune responses that would achieve cross-

strain breadth. Emphasis was placed upon vaccines that

induced CD8+ T-cell responses to HIV-1, in the hope

that they would be directed at conserved regions of HIV

and therefore be effective across different populations

and clades. Pathogenesis studies revealed that the mag-

nitude and breadth of the early CD8+ T-cells markedly

influenced early viral control, so cytotoxic T-cell (CTL)-

based vaccines were designed primarily to control post-

infection viremia, but there were also hopes they could

prevent HIV acquisition. The strategy to induce CTL

responses to HIV proteins was to insert HIV genes into

recombinant viral vectors and shuttle these genes into the

Class I antigen-presenting pathway [6].

The first T-cell vaccine candidate to undergo clinical

efficacy trials was a replication-defective recombinant

Ad5 vector with HIV-1 clade B gag/pol/nef inserts. It

had promising non-human primate data and exceptional

human immunogenicity. Containing no envelope genes,

this vaccine tested the concept of whether a CD8+ T-cell

response would reduce post-acquisition viremia. It was

given as three injections (0, 1, 6.5 months) in two phase 2b

trials starting in 2004 (‘Step’) and 2007 (‘Phambili’). Later
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Figure 1
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Major advances in the path toward novel vaccine designs.
in 2007, when futility was declared for the efficacy objec-

tive of Step, both Step and Phambili discontinued enrol-

ment and vaccination, unblinding participants and

continuing safety follow up.

Both trials revealed unexpected findings. The Step data,

in men who have sex with men (MSM), showed that

vaccine-recipients with pre-existing immunity to Ad5

and/or who were uncircumcised had an increased risk

of HIV-1 acquisition which waned with time [7]. Pham-

bili, conducted in heterosexual adults, showed no vaccine

effect on HIV acquisition during blinded follow-up, but

during the unblinded follow-up there was higher HIV-1

[8] phenomenon could not be attributed to circumcision

status or baseline Ad5 sero-positivity [9�]. The mecha-

nism of increased HIV-1 acquisition has not been deci-

phered [10].

Step had further repercussions because it was found that

the vaccine produced what were felt to be reasonable

levels of CD8+ T-cell responses as well as long-standing

immune responses recognizing clades B and C, with no

effect on HIV-1 acquisition or viral load set-point. Post

hoc analysis indicated that these CD8+ immune

responses were directed at variable, not conserved,

regions of the virus. Hence ‘immune T-cell breadth’,
www.sciencedirect.com 
like neutralizing antibody breadth, was still an issue that

needed to be solved [11].

DNA and Ad5 vector — another T-cell based approach

Shortly after Step was initiated, a strategy was developed to

prime Ad5 with DNA. Incorporating vaccine strains from

every major HIV-1 clade, it attempted to overcome the

antibody and T-cell breadth problems. The DNA vaccine

(0, 1, 2 months) contained a mixture of six plasmids

expressing clade B gag, pol, nef and env proteins from

clades A, B, and C, followed by a Ad5 vector boost (month

6) expressing a clade B gag-pol fusion protein and env

glycoproteins from clades A, B, and C. The non-human

primate model demonstrated protection from low-dose

mucosal challenge [12]. The Phase 2A human clinical

study, HVTN 204 demonstrated CD4+ T-cell responses

to HIV-1 envelope, little neutralizing antibodies, but eli-

cited binding antibodies to gp41 and HIV gp120 [13].

HVTN 505 evaluated the regimen in Ad5-seronegative

circumcised MSM. Although increased rates of HIV

acquisition were not seen, there was no efficacy and no

reduction in viral load setpoint [14]. The reasons for

failure are under speculation. Studies reveal that much

of the gp41 antibodies elicited by vaccination were cross-

reactive to an E. coli antigen which may have served as a
Current Opinion in Virology 2016, 17:104–109
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Figure 2
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Development pathway to HIV preventative vaccine licensure in South

Africa.
blocking antibody [15]. Recent studies point to viral

escape mechanisms conferring neutralization resistance

[16].

Pox-vector and protein vaccine combination

RV144 (2004–2009) proved that a vaccine approach could

reduce HIV acquisition. It found 60.5% vaccine efficacy

at 1 year and 31.2% vaccine efficacy at 3.5 years with a

canarypox vector prime, ALVAC-HIV (vCP1521) expres-

sing clade E env and clade B gag and pro (0, 1, 3, 6 months)

followed by protein boosts with alum adjuvant, AIDS-

VAX1 clades B/E gp120 (3, 6 months) [17��].

In preclinical testing, ALVAC-HIV had been less immu-

nogenic than many other prototypes in human testing

[18,19]. Moreover, the solo use of AIDSVAX1 as well as

a bivalent clade B gp120 had been ineffective in prevent-

ing HIV-1 acquisition [1,2]. That the combination of the

immunogens would reduce HIV-1 acquisition among

heterosexual Thai adults was astonishing.

None of the sera from RV144 recipients, even at peak

levels of antibody response, neutralized a panel of 20 con-

temporaneous isolates of HIV-1 circulating in Thailand

during the course of the trial. However, essentially all

RV144 vaccine-recipients developed binding antibodies

to gp120 [20��]. Post-vaccination sera tested against a

linear peptide array derived from an HIV strain used in

both the vector and gp120 exhibited a high binding

pattern to peptides in the V1V2 region, especially the

conserved amino acids on the V1V2 crown, residues 163–
178. Vaccine-recipients with the highest magnitude of

binding antibody titers were more likely to be protected

than those with lower titers, with a reasonably linear

association between vaccine efficacy and the peak con-

centration to the V1V2 scaffold. Epitope mapping of the

antibodies to V1V2 indicated that much of the immune

response was directed at a linear epitope interval includ-

ing a lysine residue at amino acid 169 in the env V2 region.

Antibodies from RV144 vaccine-recipients that bound to

the K169 V2 region did not neutralize nor capture hard-to-

neutralize (tier 2) subtype AE viruses but did bind to env

on tier 2 AE virus-infected CD4+ T cells and mediate

antibody-dependent cellular cytotoxicity (ADCC).

The arising hypothesis is that one mediator of the pro-

tective anti-HIV-1 antibody effector function induced by

the RV144 vaccine was a non-neutralizing and most likely

Fc receptor (FcR)-mediated action that included ADCC

activity. Interestingly, V1V2 responses were not elicited

by the DNA/Ad5 regimen (HVTN 505), even though

these sequences were present in 2 of the 3 envelope

vaccine constructs [21].

Genetic sieve analysis of viral isolates from HIV-infected

participants revealed that isolates from vaccine-recipients

were less likely to possess a lysine at K169 of the env V2
Current Opinion in Virology 2016, 17:104–109 
region than placebo-recipients, and vaccine efficacy was

significantly higher against HIV-1 manifesting a lysine at

K169 than against HIV-1 with a different residue at

position 169, suggesting vaccine immune pressure at this

region [22]. Thus, the immunological and virological data

concur the V2 region of HIV-1 is a vulnerable point, and a

target site of protective antibodies associated with vac-

cine efficacy of the RV144 regimen.

Building on RV144 (Figure 2)

In 2010, shortly after the announcement of the RV144

results, the pox protein public–private partnership (P5

Partnership) convened to develop the pox-protein regimen

for sub-Saharan Africa. HVTN 097 evaluated the RV144

regimen in South Africa, a different setting to Thailand in

terms of circulating HIV clade, predominant modes of

transmission and average body mass index. Immunologic

response in South Africans was comparable to, if not

slightly better than, responses induced in Thailand [23].

P5 redesigned the ALVAC vector with a clade C env

insert and constructed a bivalent clade C recombinant

gp120. These vaccines are being tested in southern Africa

with two different adjuvants, MF591 and ASO1B, to try

to improve responses and the regimen includes a

12 month boost to extend durability. Pending results

from HVTN 100, a phase 1/2 study, ALVAC/gp120/

MF591 is scheduled for evaluation in a pivotal efficacy

trial in late 2016.

Other prime-boost approaches

Another approach for improving upon RV144 is to use

more immunogenic vector platforms to improve B- and
www.sciencedirect.com



HIV preventative and therapeutic vaccines Gray et al. 107

Table 1

Current therapeutic HIV vaccine approaches

� Inactivated whole virus depleted of gp120

� Single or multiple HIV antigens administered as DNA

� Autologous dendritic cells

� Viral vectors, for example, poxviruses (canarypox ALVAC-HIV,

vCP1452, vCP1433, fowlpox, MVA), adenoviruses (Ad5)
T-cell priming, especially to envelope proteins. Investi-

gations into an Ad35 vector platform showed tolerability

and immunogenicity as a prime to Ad5 and as a boost to

DNA immunization [24]. A leading second-generation

vector under development is replication-incompetent

Ad26 in combination with modified vaccinia Ankara

(MVA) and recombinant protein. The vectors contain

novel mosaic inserts designed to elicit cross-clade immu-

nity [6]. Non-human primate studies using Ad26/MVA/

trimeric gp140/ASO1B adjuvant demonstrated protection

from mucosal challenge. Envelope-specific non-neutral-

izing binding antibodies are the main correlates of pro-

tection in these animals.

Neutralizing antibodies
The lack of broadly neutralizing antibodies elicited by the

RV144-like regimens is an acknowledged deficiency in their

immune profile. A concerted international effort is research-

ing immunogens that will elicit broader neutralizing anti-

bodies. The trimeric structure of HIV, defining masking

epitopes and eliminating them from a potential vaccine

immunogen, and using sequential heterologous isolates to

‘coax’ the immune system toward the development of

broadly neutralizing antibodies are all under study [25].

Antibody-mediated prevention: monoclonal antibody

approaches

Passive immunization is the administration of antibodies

to prevent infection. Antibodies have been isolated which

can neutralize a broad range of HIV strains in vitro, raising

hopes for antibody-mediated prevention (AMP) of HIV.

The first antibody to enter advanced human clinical trials

is VRC01, discovered in an elite viral controller [26]. It is a

human monoclonal antibody targeting the HIV-1 CD4

binding site. VRC01 demonstrated protection in animal

studies, and has acceptable human safety [27�]. HVTN

703 will investigate the effectiveness of VRC01 and the

level of neutralizing activity required in reducing HIV

acquisition.

Therapeutic vaccines
Even if only partially effective, therapeutic vaccines may

be valuable for HIV-infected individuals as treatment

intensification on the immune system and viral reservoir

when combined with highly active antiretroviral therapy

(HAART), as a safeguard during suboptimal adherence,

and/or as a cure adjunct. Vaccination at the time of

primary infection or early in the course of infection has

been proposed to limit reservoir establishment and pro-

mote viral eradication, analogous to the rationale for early

HAART initiation. Unfortunately, in the past 20 years,

almost fifty safety, immunogenicity and some efficacy

therapeutic HIV vaccine trials have been evaluated, in

acute, early and chronic HIV infection, and all with

minimal success [28,29]. Newer approaches concentrate

on antigen selection and vaccine delivery systems

(Table 1).
www.sciencedirect.com 
Tat therapeutic HIV vaccine

The Italian National AIDS Center is developing a vac-

cine targeting the HIV-1 transactivator of transcription

(Tat) protein, a key virulence factor which plays critical

roles in HIV gene expression, replication, transmission

and disease progression [30].

Tat-specific antibodies appear to be a possible key to

prevent HIV acquisition and spread. Notably, anti-Tat

antibodies are uncommon in natural infection [31,32] and,

when present, correlate with the asymptomatic state and

lower disease progression [33–35].

Phase 1 preventative and therapeutic studies demonstrat-

ed that Tat vaccination is safe and immunogenic [36–38].

A phase 2 study that was not blinded and did not have

placebo controls suggest that in virologically-suppressed

HAART-treated participants, Tat vaccination induced

restoration of CD4+ and CD8+ T-cell numbers and func-

tional central memory T-cell subsets, of B and natural

killer (NK) cell number and a reduction of immune

activation [39,40�]. Crucially, Tat immunization induced

a statistically significant reduction of blood HIV-1 DNA

load that persisted for up to three years post-vaccination.

HIV-1 DNA decay was associated with anti-Tat antibo-

dies and neutralization of Tat-mediated entry of oligo-

meric env in dendritic cells [39,40�]. The Phase 3 trials

being developed would benefit from designs that incor-

porated placebo and double-blinding.

Therapeutic HIV antibodies

Broadly neutralizing antibodies offer not only prevention

potential, but also treatment. In early-phase clinical trials,

VRC01 and another human monoclonal antibody,

3BNC117, reduced viral load in HIV-1-infected individ-

uals not on HAART [41,42�].

Conclusion
After numerous non-efficacious preventive and therapeu-

tic vaccine candidates, pox/gp120 regimens, monoclonal

antibodies, and Tat vaccines are amongst the latest

approaches for exploration.
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