

NOCIONES DE PROBABILIDADES

Gabriel Cavada Julio de 2020

Introducción

El cálculo de probabilidades tiene su origen en la época pos renacentista, nace del estudio de los juegos de azar, del deseo de poder cuantificar las posibilidades de ganar o perder que se tienen ante una mano de naipes, el lanzamiento de un dado o lanzar una moneda al aire. Sin embargo este interés lúdico inicial trascendió en la historia del pensamiento, pues un análisis mas fino de cualquier situación real nos lleva a considerar una porción de azar (imponderables) que está presente en la misma.

• ¿De qué estamos seguros?

Sólo de nuestra muerte "biológica", la mayoría de las veces cuando decimos que algo será "seguro" en realidad estamos diciendo que es altamente probable que ocurra.

- Al estudiar la realidad podemos distinguir dos tipos de experimentos: Los determinísticos y los probabilísticos.
- Los experimentos determinísticos son aquellos que tienen sólo un resultado posible y además este es predecible.
- Los experimentos probabilísticos son aquellos que tienen mas de un resultado posible y cada resultado no es predecible.

- Dado un experimento cualquiera, que denotaremos por E, llamamos ESPACIO MUESTRAL, denotado por Ω , al conjunto de todos los posibles resultados de E. Como ejemplos tenemos:
 - a) E: Se lanza una moneda al aire

$$\Omega$$
={cara, sello}

b) E: Se lanza un dado

$$\Omega = \{1,2,3,4,5,6\}$$

c) E: Se juega una cartilla de Loto

$$\Omega_1$$
= \begin{cases} se gana premio, no se gana premio \end{cases} ó Ω_2 = \begin{cases} 0,1,2,3,4,5,6 \end{cases}

- Se llama suceso o evento a cualquier subconjunto de Ω .
- Los sucesos se denotan por letras mayúsculas: A, B,...
- El hecho que A sea un suceso de Ω , lo denotamos por A $\subset \Omega$.
- El conjunto vacío (\varnothing) es un suceso, pues $\varnothing \subset \Omega$ y le llamamos suceso vacío o suceso imposible.
- Como $\Omega \subset \Omega$, Ω también es un suceso que llamamos suceso seguro.

Si jugamos al Cara y Sello y previamente se nos pregunta por la "probabilidad" de sacar Cara, seguramente diremos que es de 50%, pues diremos que hay sólo dos posibles resultados, pero además hemos supuesto que las posibilidades de obtener Cara son idénticas a las de obtener Sello, este concepto se denomina EQUIPROBABILIDAD

- Se llama medida de un conjunto a algún número que nos indique el tamaño del conjunto, la medida del conjunto A se denota por m(A).
- Si el conjunto es finito y se pueden contar sus elementos, la medida natural que aparece es m(A)="número de elementos del conjunto".
- Si el conjunto es un intervalo de la recta real o una porción del plano cartesiano puede considerarse como m(A)="longitud del intervalo" o m(A)="área de la porción del plano cartesiano" según sea el caso.

- Definición clásica de probabilidad
- Introducido el concepto de medida, podemos dar una definición de probabilidad del un suceso A como: "medida de A dividido por medida de Ω ", en símbolos:

$$P(A) = \frac{m(A)}{m(\Omega)}$$

- De esta definición aparecen dos resultados fundamentales:
 - $P(\emptyset)=0$, la probabilidad del suceso imposible es nula.
 - $P(\Omega)=1$, la probabilidad del espacio muestral es 1.

- Dos sucesos A y B se dicen excluyentes, si es IMPOSIBLE que ocurran juntos (al mismo tiempo), en símbolos $A \cap B = \emptyset$.
- Por ejemplo se lanza un dado y el dado muestra "un número par e impar" a la vez.

- Hechas las consideraciones anteriores, enunciamos los AXIOMAS del cálculo de probabilidades:
 - 1. $0 \le P(A) \le 1$
 - 2. Si $A \cap B = \emptyset$ entonces $P(A \cup B) = P(A) + P(B)$

 Para enfrentar un problema de cálculo de probabilidades, se debe poner especial cuidado en definir los sucesos de interés. Ejemplifiquemos con algunas situaciones elementales del experimento "lanzar un dado":

E: Se lanza un dado, así:
$$\Omega = \{1,2,3,4,5,6\}$$

Definamos los sucesos siguientes y calculemos sus probabilidades de ocurrencia:

- 1. A: "el dado muestra as", así: $A = \{1\}$ y m(A)=1, con lo que:
- 2. B: "el dado muestra un número impar", así $B=\{1,3,5\}$ y m(B)=3, $P(A)=\frac{1}{6}$ que:

$$P(B) = \frac{3}{6} = \frac{1}{2}$$

- La realidad presenta sucesos compuestos, los que se forman uniéndolos, intersectándolos y complementándolos.
- Dados los sucesos A y B se tiene:
 - A∩B: sucede A y sucede B (suceden ambos a la vez)
 - $A \cup B$: sucede A ó B, así $P(A \cup B) = P(A) + P(B) P(A \cap B)$
 - A^c : no sucede A, así $P(A^c)=1-P(A)$

Decimos de los sucesos A y B son INDEPENDIENTES, si la ocurrencia de uno de ellos no altera la ocurrencia o no ocurrencia del otro, la hipótesis de independencia se expresa así:

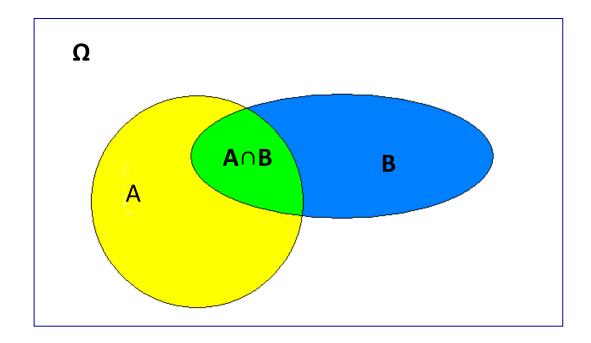
$$P(A \cap B) = P(A) \cdot P(B)$$

Además la realidad presenta abundantemente SUCESOS CONDICIONALES, es decir sucesos que condicionan su ocurrencia a la presencia de otros, así podemos preguntarnos por la probabilidad de que ocurra un evento DADO EL HECHO que ocurrió tal o cual evento.

Si consideramos los sucesos A y B, de modo que B condiciona la ocurrencia de A entonces la probabilidad de que "ocurra A dado el hecho que ocurrió B" es:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Condicionar el suceso A al suceso B, es reducir el espacio muestral a B.



• De la fórmula:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Tener presente que:

•
$$P(A \cap B) = P(A \mid B) \cdot P(B)$$

$$P(A|B) \neq P(B|A)$$

• Ejemplo: Considerar la siguiente tabla:

	Sano	Enfermo	
Mujer	6	2	8
Hombre	8	4	12
	14	6	20

Aquí se pueden distinguir cuatro sucesos, de los cuales dos son fundamentales:

A : la persona es MUJER

B: la persona está SANA

A^c : la persona es HOMBRE

B^c : la persona está ENFERMA

	Sano (B)	Enferm o (B ^c)	
Mujer (A)	6	2	8
Hombre (A ^c)	8	4	12
	14	6	20

-P(A) = 8/20 = 0.40, la probabilidad de ser mujer.

- P(B) = 14/20=0.60, la probabilidad de estar sano.

-P(A \cap B^c)=2/20=0.10, la probabilidad de ser mujer y estar enfermo.

-P(A|B)=6/14=0.43, la probabilidad de ser mujer dado que está sano.

P(B|A)=6/8=0.75, la probabilidad de estar sano dado que es mujer.

• En múltiples oportunidades la ocurrencia de un suceso principal A se debe a la ocurrencia previa de causas, que también son sucesos, de modo que en el cálculo de la probabilidad de la ocurrencia de A las probabilidades de los sucesos causales deben ser incluidas según la ponderación o influencia que tengan sobre A.

Si el suceso principal A se debe a las causas E_1 , E_2 ,..., E_n , entonces:

$$P(A) = P(A \mid E_1)P(E_1) + P(A \mid E_2)P(E_2) + ... + P(A \mid E_n)P(E_n)$$
=

$$P(A) = \sum_{i=1}^{n} P(A \mid E_i) P(E_i)$$

Esta fórmula recibe el nombre de TEOREMA DE LA PROBABILIDAD TOTAL

Ejemplo: En un hospital hay tres servicios: Urgencia, Cirugía y Medicina. El porcentaje de hospitalizados por servicio es: Urgencia 30%, Cirugía 20% y Medicina 50%. Si la mortalidad en cada servicio es 10%, 5% y 3% respectivamente. ¿Cuál es la probabilidad de que un paciente hospitalizado muera?

Suceso principal, A: el paciente muere

Causas : E₁: el paciente está en urgencia

E₂: el paciente está en cirugía

E₃: el paciente está en medicina

$$P(A) = P(A \mid E_1)P(E_1) + P(A \mid E_2)P(E_2) + P(A \mid E_3)P(E_3)$$

$$P(A) = 0.1.0.3 + 0.05.0.2 + 0.03.0.5 = 0.055$$

- En ocasiones es necesario calcular la probabilidad de que una determinada causa haya producido el suceso principal. Es decir necesitamos saber $P(E_k|A)$.
- En el ejemplo: Si se nos comunica que ha ocurrido una muerte, ¿Cuál es la probabilidad que haya ocurrido en Urgencia?

Suceso principal, A: el paciente muere.

Causas: E_1 : el paciente está en Urgencia; E_2 : el paciente está en Cirugía; E_3 : el paciente está en Medicina

Es decir se pide:

$$P(E_1 \mid A) = \frac{P(E_1 \cap A)}{P(A)} = \frac{P(A \cap E_1)}{P(A)} = \frac{P(A \mid E_1) \cdot P(E_1)}{P(A \mid E_1) \cdot P(E_1) + P(A \mid E_2) \cdot P(E_2) + P(A \mid E_3) \cdot P(E_3)}$$

Suceso principal, A: el paciente muere

Causas : E₁: el paciente está en urgencia

E₂: el paciente está en cirugía

E₃: el paciente está en medicina

$$P(A) = P(A \mid E_1)P(E_1) + P(A \mid E_2)P(E_2) + P(A \mid E_3)P(E_3)$$

$$P(A) = 0.1.0.3 + 0.05.0.2 + 0.03.0.5 = 0.055$$

$$P(E_1 \mid A) = \frac{P(E_1 \cap A)}{P(A)} = \frac{P(A \cap E_1)}{P(A)} = \frac{P(A \mid E_1) \cdot P(E_1)}{P(A \mid E_1) \cdot P(E_1) + P(A \mid E_2) \cdot P(E_2) + P(A \mid E_3) \cdot P(E_3)}$$

$$P(E_1 \mid A) = \frac{0.1 \cdot 0.3}{0.055} = 0.545$$

Generalizando el resultado anterior

$$P(E_{k} | A) = \frac{P(A | E_{k}) \cdot P(E_{k})}{P(A | E_{1}) \cdot P(E_{1}) + P(A | E_{2}) \cdot P(E_{2}) + \dots + P(A | E_{n}) \cdot P(E_{n})}$$

$$\delta$$

$$P(E_{k} | A) = \frac{P(A | E_{k}) \cdot P(E_{k})}{\sum_{i=1}^{n} P(A | E_{i}) \cdot P(E_{i})}$$

Fórmula que es conocida como el TEOREMA DE BAYES