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Summary: In mental health and psychosocial studies it is often necessary to report on the between-rater 
agreement of measures used in the study. This paper discusses the concept of agreement, highlighting 
its fundamental difference from correlation. Several examples demonstrate how to compute the kappa 
coefficient – a popular statistic for measuring agreement – both by hand and by using statistical software 
packages such as SAS and SPSS. Real study data are used to illustrate how to use and interpret this coefficient 
in clinical research and practice. The article concludes with a discussion of the limitations of the coefficient. 
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1. Introduction
For most physical illnesses such as high blood pressure 
and tuberculosis, definitive diagnoses can be made 
using medical devices such as a sphygmomanometer for 
blood pressure or an X-ray for tuberculosis. However, 
there are no error-free gold standard physical indicators 
of mental disorders, so the diagnosis and severity 
of mental disorders typically depends on the use of 
instruments (questionnaires) that attempt to measure 
latent multi-faceted constructs. For example, psychiatric 
diagnoses are often based on criteria specified in the 
Fourth edition of the Diagnostic and Statistical Manual 
of Mental Disorders (DSM-IV)[1], published by the 
American Psychiatric Association. But different clinicians 
may have different opinions about the presence or 
absence of the specific symptoms required to determine 
the presence of a diagnosis, so there is typically no 
perfect agreement between evaluators. In this situation, 
statistical methods are needed to address variability in 
clinicians’ ratings. 

Cohen’s kappa is a widely used index for assessing 
agreement between raters.[2] Although similar in 
appearance, agreement is a fundamentally different 
concept from correlation. To illustrate, consider an 
instrument with six items and suppose that two raters’ 
ratings of the six items on a single subject are (3,5), (4,6), 
(5,7), (6,8), (7,9) and (8,10). Although the scores of the 
two raters are quite different, the Pearson correlation 

coefficient for the two scores is 1, indicating perfect 
correlation. The paradox occurs because there is a bias 
in the scoring that results in a consistent difference of 
2 points in the scores of the two raters for all 6 items 
in the instrument. Thus, although perfectly correlated 
(precision), there is quite poor agreement between 
the two raters. The kappa index, the most popular 
measure of raters’ agreement, resolves this problem 
by assessing both the bias and the precision between 
raters’ ratings.  

In addition to its applications to psychiatric 
diagnosis, the concept of agreement is also widely 
applied to assess the utility of diagnostic and screening 
tests. Diagnostic tests provide information about a 
patient’s condition that clinicians’ often use when 
making decisions about the management of patients. 
Early detection of disease or of important changes in the 
clinical status of patients often leads to less suffering and 
quicker recovery, but false negative and false positive 
screening results can result in delayed treatment or in 
inappropriate treatment. Thus when a new diagnostic 
or screening test is developed, it is critical to assess its 
accuracy by comparing test results with those from a 
gold or reference standard. When assessing such tests, 
it is incorrect to measure the correlation of the results 
of the test and the gold standard, the correct procedure 
is to assess the agreement of the test results with the 
gold standard. 
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2. Problems
Consider an instrument with a binary outcome, with 
‘1’ representing the presence of depression and ‘0’ 
representing the absence of depression. Suppose two 
independent raters apply the instrument to a random 
sample of n subjects. Let  and  denote the ratings on 
the n subjects by the two raters for i=1,2,...,n. We are 
interested in the degree of agreement between the two 
raters. Since the ratings are on the same scale of two 
levels for both raters, the data can be summarized in a 
2×2 contingency table. 

To illustrate, Table 1 shows the results of a study 
assessing the prevalence of depression among 200 
patients treated in a primary care setting using two 
methods to determine the presence of depression;[3] 
one based on information provided by the individual 
(i.e., proband) and the other based on information 
provided by another informant (e.g., the subject’s family 
member or close friend) about the proband. Intuitively, 
we may think that the proportion of cases in which 
the two ratings are the same (in this example, 34.5% 
[(19+50)/200]) would be a reasonable measure of 
agreement. But the problem with this proportion is that 
it is almost always positive, even when the rating by the 
two methods is completely random and independent of 
each other. So the proportion of overall agreement does 
not indicate whether or not two raters or two methods 
of rating are in agreement. 

by chance. This chance agreement must be removed 
in order to provide a valid measure of agreement. 
Cohen’s kappa coefficient is used to assess the level of 
agreement beyond chance agreement. 

Table 1. Diagnosis of depression among 200 
primary care patients based on 
information provided by the proband and 
by other  informants about the proband

Proband
Informant

totalnot
depressed depressed

not depressed 66 19 85
depressed 50 65 115
total 116 84 200

For example, suppose that two raters with no 
training or experience about depression randomly 
decide whether or not each of the 200 patients has 
depression. Assume that one rater makes a positive 
diagnosis (i.e., considers depression present) 80% of the 
time and the other gives a positive diagnosis 90% of the 
time. Based on the assumption that their diagnoses are 
made independently from each other, Table 2 represents 
the joint distribution of their ratings. The proportion 
that the two raters give the same diagnosis is 74% (i.e., 
0.72+0.02), suggesting that the two raters are doing a 
good job of diagnosing the presence of depression. But 
this level of agreement is purely by chance, it does not 
reflect the actual degree of agreement between the 
two raters. This hypothetical example shows that the 
proportion of cases in which two raters give the same 
ratings on an instrument is inflated by the agreement 

Table 2. Hypothetical example of proportional 
distribution of diagnoses by two raters 
that make diagnoses independently from 
each other

Rater 1 result
Rater 2 result

total
positive negative

positive 0.72  0.08 0.80
negative 0.18 0.02  0.20
total 0.90 0.10 1.00

3. Kappa for 2×2 tables
Consider a hypothetical example of two raters giving 
ratings for n subjects on a binary scale, with ‘1’ 
representing a positive result (e.g., the presence of 
a diagnosis) and ‘0’ representing a negative result 
(e.g., the absence of a diagnosis). The results could 
be reported in a 2x2 contingency table as shown in 
Table 3. By convention, the results of the first rater 
are traditionally shown in the rows (x values) and the 
results of the second rater are shown in the columns 
(y values). Thus, nij in the table denotes the number of 
subjects who receive the rating of i from the first rater 
and the rating j from the second rater. Let Pr(A) denote 
the probability of event A; then pij=Pr(x=i,y=j) represent 
the proportion of all cases that receive the rating of 
i from the first rater and the rating j from the second 
rater, pi+=Pr(x=i) represents the marginal distribution of 
the first rater’s ratings, and p+j=Pr(y=j) represents the 
marginal distribution of the second rater’s ratings. 

Table 3. A typical 2×2 contingency table to assess 
agreement of two raters

First rater (x)
Second rater (y)

total
1 (positive) 0 (negative)

1 (positive) n11 n10 n1+

0 (negative) n01 n00 n0+

total n+1 n+0 n

If the two raters give their ratings independently 
according to their marginal distributions, the probability 
that a subject is rated 0 (negative) by chance by both 
raters is the product of the marginal probabilities p0+ and 
p+0. Likewise, the probability of a subject being rated 
1 (positive) by chance by both raters is the product of 
the marginal probabilities p1+ and p+1. The sum of these 
two probabilities (p1+*p+1 + p0+*p+0) is the agreement by 
chance, that is, the source of inflation discussed earlier. 
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After excluding this source of inflation from the total 
proportion of cases in which the two raters give identical 
ratings (p11 + p00), we arrive at the agreement corrected 
for chance agreement, (p11+p00 – (p1+*p+1 + p0+*p+0)). In 
1960 Cohen[1] recommended normalizing this chance-
adjusted agreement as the Kappa coefficient (K):
	

(1)

This normalization process produces kappa coefficients 
that vary between −1 and 1, depending on the degree 
of agreement or disagreement beyond chance. If the 
two raters completely agree with each other, then 
p11+p00=1 and K=1. Conversely, if the kappa coefficient 
is 1, then the two raters agree completely. On the other 
hand, if the raters rate the subjects in a completely 
random fashion, then the agreement is completely due 
to chance, so p11=p1+*p+1 and p00=p0+*p+0 do (p11+p00 – 
(p1+*p+1 + p0+*p+0))=0 and the kappa coefficient is also 
0. In general, when rater agreement exceeds chance 
agreement the kappa coefficient is positive, and 
when raters disagree more than they agree the kappa 
coefficient is negative. The magnitude of kappa indicates 
the degree of agreement or disagreement. 

The kappa coefficient can be estimated by 
substituting sample proportions for the probabilities 
shown in equation (1). When the number of ratings 
given by each rater (i.e., the sample size) is large, the 
kappa coefficient approximately follows a normal 
distribution. This asymptotic distribution can be 
estimated using delta methods based on the asymptotic 
distributions of the various sample proportions.[4] 
Based on the asymptotic distribution, calculations 
of confidence intervals and hypothesis tests can be 
performed. For a sample with 100 or more ratings, this 
generally provides a good approximation. However, it 
may not work well for small sample sizes, in which case 
exact methods may be applied to provide more accurate 
inference.[4]

Example 1. Assessing the agreement between 
the diagnosis of depression based on information 
provided by the proband compared to the 
diagnosis based on information provided by other 
informants (Table 1), the Kappa coefficient is 
computed as follows: 

The asymptotic standard error of kappa is 
estimated as 0.063. This gives a 95% confidence 
interval of κ, (0.2026, 0.4497). The positive kappa 
indicates some degree of agreement about the 
diagnosis of depression between diagnoses based 
on information provided by the proband versus 
diagnoses based on information provided by other 
informants. However, the level of agreement, 
though statistically significant, is relatively weak. 

In most applications, there is usually more interest 
in the magnitude of kappa than in the statistical 
significance of kappa. When the sample is relatively 
large (as in this example), a low kappa which represents 
relatively weak agreement can, nevertheless, be 
statistically significant (that is, significantly greater 
than 0). The degree of beyond-chance agreement has 
been classified in different ways by different authors 
who arbitrarily assigned each category to specific 
cutoff levels of Kappa. For example, Landis and Koch[5] 
proposed that a kappa in the range of 0.21–0.40 be 
considered ‘fair ’ agreement, kappa=0.41–0.60 be 
considered ‘moderate’ agreement, kappa=0.61–0.80 be 
considered ‘substantial’ agreement, and kappa >0.81 be 
considered ‘almost perfect’ agreement. 

4. Kappa for categorical variables with multiple levels
The kappa coefficient for a binary rating scale can be 
generalized to cases in which there are more than two 
levels in the rating scale. Suppose there are k nominal 
categories in the rating scale. For simplicity and without 
loss of generality, denote the rating levels by 1,2,...,k. 
The ratings from the two raters can be summarized in a 
k×k contingency table, as shown in Table 4. In the table, 
nij, pij, pi+, and p+j have the same interpretations as in 
the 2x2 contingency table (above) but the range of the 
scale is extended to i,j=1,…,k. As in the binary example, 
we first compute the agreement by chance, (the sum 
of the products of the k marginal probabilities, ∑ pi+*p+i 
for i=1,…,k), and subtract this chance agreement from 
the total observed agreement (the sum of the diagonal 
probabilities, ∑ pii for i=1,...,k) before estimating the 
normalized agreement beyond chance:
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Table 4. Model KxK contingency table to assess 
agreement about k categories by two 
different raters

x
y

total
1 2 ... k

1 n11 n12 ... n1k n1+

2 n21 n22 ... n2k n2+

... ... ... ... ... ...
k nk1 nk2 ... nkk nk+

total n+1 n+2 ... n+k n

As in the case of binary scales, the kappa coefficient 
varies between −1 and 1, depending on the extent of 
agreement or disagreement. If the two raters completely 
agree with each other (∑ pii=1, for i=1,…,k), then the 
kappa coefficient is equal to 1. If the raters rate the 
subjects at random, then the total agreement is equal 
chance agreement (∑ pii =∑ pi+*p+i, for i=1,…,k ) so the 
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kappa coefficient is 0. In general, the kappa coefficient 
is positive if there is agreement or negative if there is 
disagreement, with the magnitude of kappa indicating 
the degree of such agreement or disagreement between 
the raters. The kappa index in equation (2) is estimated 
by replacing the probabilities with their corresponding 
sample proportions. As in the case of binary scales, we 
can use asymptotic theory and exact methods to assess 
confidence intervals and make inferences. 

5. Kappa for ordinal or ranked variables
The definition of the kappa coefficient in equation 
(2) assumes that the rating categories are treated 
as independent categories. If, however, the rated 
categories are ordered or ranked (for example, a 
Likert scale with categories such as ‘strongly disagree’, 
‘disagree’, ‘neutral’, ‘agree’, and ‘strongly agree’), then 
a weighted kappa coefficient is computed that takes 
into consideration the different levels of disagreement 
between categories. For example, if one rater ‘strongly 
disagrees’ and another ‘strongly agrees’ this must be 
considered a greater level of disagreement than when 
one rater ‘agrees’ and another ‘strongly agrees’.

The first step in computing a weighted kappa is 
to assign weights representing the different levels of 
agreement for each cell in the KxK contingency table. 
The weights in the diagonal cells are all 1 (i.e., wii=1, 
for all i), and the weights in the off-diagonal cells range 
from 0 to <1 (i.e., 0<wij<1, for all i≠j). These weights 
are then added to equation (2) to generate a weighted 
kappa that accounts for varying degrees of agreement 
or disagreement between the ranked categories: 
	

The weighted kappa is computed by replacing the 
probabilities with their respective sample proportions, 
pij, pi+, and p+i. If wij=0 for all i≠j, the weighted kappa 
coefficient Kw reduces to the standard kappa in 
equation (2). Note that for binary rating scales, there 
is no weighted version of kappa, since κ remains the 
same regardless of the weights used. Again, we can 
use asymptotic theory and exact methods to estimate 
confidence intervals and make inferences.  

In theory, any weights satisfying the two defining 
conditions (i.e., weights in diagonal cells=1 and 
weights in off-diagonal cells >0 and <1) may be used. 
In practice, however, additional constraints are often 
imposed to make the weights more interpretable 
and meaningful. For example, since the degree of 
disagreement (agreement) is often a function of the 
difference between the ith and jth rating categories, 
weights are typically set to reflect adjacency between 
rating categories, such as by wij=f(i-j), where f is some 
decreasing function satisfying three conditions: (a) 
0<f(x)<1; (b) f(x)=f(-x); and (c) f(0)=1. Based on these 
conditions, larger weights (i.e., closer to 1) are used for 

weights of pairs of categories that are closer to each 
other and smaller weights (i.e., closer to 0) are used for 
weights of pairs of categories that are more distant from 
each other.                                      

Two such weighting systems based on column 
scores are commonly employed. Suppose the column 
scores are ordered, say C1≤C2…≤Cr and assigned values 
of 0,1,…r. Then, the Cicchetti–Allison weight and the 
Fleiss–Cohen weight in each cell of the KxK contingency 
table are computed as follows: 

Cicchetti-Allison weights: 

Fleiss-Cohen weights: 

Example 2. If depression is categorized into three 
ranked levels as shown in Table 5, the agreement 
of the classification based on information provided 
by the probands with the classification based on 
information provided by other informants can be 
estimated using the unweighted kappa coefficient 
as follows: 

	

Applying the Cicchetti-Allison weights (shown in 
Table 5) to the unweighted formula generates a 
weighed kappa:

Applying the Fleiss-Cohen weights (shown in Table 
5) involves replacing the 0.5 weight in the above 
equation with 0.75 and results in a Kw of 0.4482. 
Thus the weighted kappa coefficients have larger 
absolute values than the unweighted kappa 
coefficients. The overall result indicates only fair to 
moderate agreement between the two methods 
of classifying the level of depression. As seen in 
Table 5, the low agreement is partly due to the 
fact that a large number of subjects classified as 
minor depression based on information from the 
proband were not identified using information 
from other informants. 

6. Statistical Software
Several statistical software packages including SAS, 
SPSS, and STATA can compute kappa coefficients. But 
agreement data conceptually result in square tables 
with entries in all cells, so most software packages 
will not compute kappa if the agreement table is non-
square, which can occur if one or both raters do not use 
all the rating categories when rating subjects because of 
biases or small samples. 
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In some special circumstances the software pack-
ages will compute incorrect kappa coefficients if a 
square agreement table is generated despite the 
failure of both raters to use all rating categories. For 
example, suppose a scale for rater agreement has three 
categories, A, B, and C. If one rater only uses categories 
B and C, and the other only uses categories A and B, 
this could result in a square agreement table such as 
that shown in Table 6. This is a square table, but the 
rating categories in the rows are completely different 
from those represented by the column. Clearly, kappa 
values generated using this table would not provide the 
desired assessment of rater agreement. To deal with this 
problem the analyst must add zero counts for the rating 
categories not endorsed by the raters to create a square 
table with the right rating categories, as shown in Table 7. 

6.1 SAS
In SAS, one may use PROC FREQ and specify the 
corresponding two-way table with the “AGREE” option. 

Table 6. Hypothetical example of incorrect 
agreement table that can occur when two 
raters on a three-level scale each only use 
2 of the 3 levels

Classification 
of rater 1

Classification of rater 2
total

B C

A 16 2  18
B 5 14 19
total 21 16 37

Table 7. Adjustment of the agreement table (by 
adding zero cells) needed when two raters 
on a three-level scale each only use 2 of 
the 3 levels

Classification 
of rater 1

Classification of rater 2
total

A B C

A 0 16 2  18
B 0 5 14 19
C 0 0 0 0
total 0 21 16 37

Table 5. Three ranked levels of depression categorized based on information from the probands themselves 
or on information from other informants about the probands 

Probands
Other informants

total
no depression minor depression major depression

no depression 66 (1.0/1.0)a 13 (0.5/0.75)a 6 (0.0/0.0)a 85
minor depression 36 (0.5/0.75)a 16 (1.0/1.0)a 10 (0.5/0.75)a 62
major depression 14 (0.0/0.0)a 12 (0.5/0.75)a 27 (1.0/1.0)a 53
total 116 41 43 200
a values in parentheses are the Cicchetti-Allison and Fleiss-Cohen weights used when computing weighted kappa

Here are the sample codes for Example 2 using PROC 
FREQ:

PROC FREQ DATA = (the data set for the depression 
diagnosis study);  
TABLE (variable on result using proband) * (variable 
on result using other informants)/ AGREE;
RUN;

PROC FREQ uses Cicchetti-Allison weights by 
default. One can specify (WT=FC) with the AGREE 
option to request weighted kappa coefficients based 
on Fleiss-Cohen weights. It is important to check the 
order of the levels and weights used in computing 
weighted kappa. SAS calculates weights for weighted 
kappa based on unformatted values; if the variable of 
interest is not coded this way, one can either recode 
the variable or use a format statement and specify the 
“ORDER = FORMATTED” option. Also note that data for 
contingency tables are often recorded as aggregated 
data. For example, 10 subjects with the rating ‘A’ from 
the first rater and the rating ‘B’ from the second rater 
may be combined into one observation with a frequency 
variable of value 10. In such cases a weight statement 
“weight (the frequency variable);” may be applied to 
specify the frequency variable.

6.2 SPSS
In SPSS, kappa coefficients can be only be computed 
when there are only two levels in the rating scale so it 
is not possible to compute weighted kappa coefficients. 
For a two-level rating scale such as that described 
in Example 1, one may use the following syntax to 
compute the kappa coefficient:

CROSSTABS
/TABLES=(variable on result using proband) BY 
(variable on result using other informants)
/STATISTICS=KAPPA.

An alternatively easier approach is to select 
appropriate options in the SPSS menu:

1. Click on Analyze, then Descriptive Statistics, then 
Crosstabs.

2. Choose the variables for the row and column 
variables in the pop-up window for the crosstab.

3. Click on Statistics and select the kappa checkbox.
4. Click Continue or OK to generate the output for the 

kappa coefficient.
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7. Discussion
In this paper we introduced the use of Cohen’s kappa 
coefficient to assess between-rater agreement, which 
has the desirable property of correcting for chance 
agreement. We focused on cross-sectional studies for 
two raters, but extensions to longitudinal studies with 
missing values and to studies that use more than two 
raters are also available.[6] Cohen’s kappa generally 
works well, but in some specific situations it may not 
accurately reflect the true level of agreement between 
raters.[7]. For example, when both raters report a very 
high prevalence of the condition of interest (as in the 
hypothetical example shown in Table 2), some of the 
overlap in their diagnoses may reflect their common 
knowledge about the disease in the population being 
rated. This should be considered ‘true’ agreement, but 
it is attributed to chance agreement (i.e., kappa=0). 

Despite such limitations, the kappa coefficient 
is an informative measure of agreement in most 
circumstances that is widely used in clinical research. 

Cohen’s kappa can only be applied to categorical 
ratings. When ratings are on a continuous scale, Lin’s 
concordance correlation coefficient[8] is an appropriate 
measure of agreement between two raters,[8] and the 
intraclass correlation coefficients[9] is an appropriate 
measure of agreement between multiple raters.
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概述：在精神卫生和社会心理学研究中，常常需要报
告研究使用某一评估方法的评估者间的一致性。本文
讨论了一致性的概念，强调一致性与相关性的本质区
别。Kappa 系数是衡量一致性的一个常用统计方法。
我们用几个例子说明如何通过手工计算或统计软件包
SAS、SPSS 等计算 Kappa 系数，用真实的研究数据说明

如何在临床研究和实践中使用和解释这个系数。最后
文章讨论了该系数的局限性。
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