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1. Introduction

It is remarkable that in the interpretation of scientific evidence, be it
as reviewer for a medical journal or as reader, clinicians appear to be the
ones most impressed by p-values and statistical significance, or the
absence thereof. They attach in their reviews and presentations more
importance to it than epidemiologists and statisticians. In fact, the latter
groups often actively discourage the use, and certainly the overinterpre-
tation of significance testing, as reflected also in reporting guidelines
such as STROBE, which see the presentation of p-values in a scientific
article as an option, not an obligation. Since the first authoritative
publications forcefully arguing against the use of statistical significance
testing appeared in the 1980s and 1990s, it is worthwhile to wonder
why p-values are still used, and why especially clinicians are so
enamoured with them. In this opinion piece I will explain why relying
on statistical testing is philosophically erroneous, how it will often
lead to the wrong conclusions, and I will give my layman's psychological
explanation why this p-disease has a strong predilection for clinicians.

2. History

Formal statistical tests were developed in the early 1900s, in which
the most prominent figures were William Gosset and Ronald Fisher.
Gosset published nearly all his work under the pseudonym ‘Student’,
since the Guinness brewery in Dublin where he worked did not allow
any of his employees to publish at all, and made the exception for Gosset's
work only after he had convinced the directors that no other company
would profit from his work, and then he still had to publish using an
alias. His main purpose was to evaluate agriculture experiments, to be
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able to compare test fields with varieties of barley or different conditions
for their yield. Another use of early statistical tests was for quality control,
i.e,, when samples from a batch of products, say lamp bulbs, are tested,
and a decision needs to be made to test more lamps from that batch or
even throw out the lot. It is important to note that, contrary to most re-
search in the biomedical fields, no hypotheses for a particular mechanism
underly these tests. It is probably the decisive feature of statistical tests
that explains their popularity: a dichotomy of yes and no conforms to
medical practice, where physicians have to decide to prescribe a drug or
do surgery, or not. Or perhaps its attractiveness lies in the simplicity of a
cut-off value that helps decide whether something is true or not. Unfortu-
nately, science is not that simple, and is not about making decisions but
about understanding nature.

3. What is a p-value

The p-value is the basis for hypothesis testing, in which there is a
null hypothesis and an alternative hypothesis. The null hypothesis
typically is that there are no differences, no treatment effects, no risk,
whereas the alternative hypothesis is that there are. So, for instance,
we are playing a betting game with a coin, and we do a test whether
the coin is fair. The null hypothesis is that the coin landing heads or
tails is equally probably, with a probability of 0.5. The alternative
hypothesis is simply that the coin is not fair, p(heads) = p(tail), or,
more simple: p(heads) # 0.5.

The experiment would be to do a number of throws, count the
numbers of heads and tails, and calculate the probability of that ob-
servation given that the coin was fair. Suppose we did four throws
and observed 4 times heads: the probability for this sequence would be
(1/2) * = 1/16 = 0.067. When we did five throws, and only observed
heads, the probability would be (1/2) > = 1/32 = 0.03. Intuitively it is
obvious that two throws showing two heads are meagre evidence for
an unfair coin, while a thousand throws of which each and every one
shows heads, is very strong evidence for an unfair coin. The probability
of that happening with a fair coin would be (1/2)'°°° which is a very
small probability indeed.

These so-called conditional probabilities (for they are conditional on
the null-hypothesis being true) are the p-values used in biomedical
research. In other words, the p-value is the probability of observing a
certain outcome (five heads in five throws) when the coin is fair.

4. Hume's problem

The Scottish philosopher David Hume (1711-1776) stated that
definite proof cannot be attained in empirical open systems, as opposed
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to deductive closed systems. Mathematics is an example of the latter.
The system is closed because all is built on a few premises, and no
external information is required to reach definitive proof. To prove
Pythagoras thesis on the lengths of the sides of a right triangle:
a? + b? = ¢, no experiments need to be done in which thousands of tri-
angles are collected and measured, but a final proof that stands for all
times can be written on a piece of paper. In biomedical sciences, as in
all empirical sciences, we need data to make inferences about nature,
and this will never constitute definitive proof. To use the example of
the coin: 1000 consecutive throws of heads would be highly suspicious
indeed, but offer no definite proof, for this can happen with a fair coin. In
fact, if we threw an infinite series of coins, there would one day be a se-
quence of 1000 heads. The probability that it happens even when the
coin is fair, which is never zero according to Hume, is the p-value.

A bit deeper: p-value and sample size

The p-value is a function of the observed effect and the sample
size. When we look for deviations from a 50-50 distribution, say
whether men and women are unevenly distributed over a certain
profession, we would not need a very large sample to detect a
gross unequality. For instance, if the distribution would be
70:30, we would have a high likelihood of picking that up with just
a sample of 50 people, and a bit less skewed distribution of 60:40
would require a still quite manageable sample size of 200. Howev-
er, suppose we would be interested in the tiniest differences, too,
such as 51:49; then we would need to include 20,000 people to
have a fair chance of seeing that small difference. Again, there
are no certainties: no sample size will guarantee that an existing
true difference will be detected (cf Hume), but the likelihood to
detect it, given a prespecified difference and sample size, can be
estimated. This is called the power, related to the type Il error
(type Il error = 1-power). In the examples above this likelihood
was set at 80%, meaning that if we did a study with 20,000 peo-
ple of a certain profession, registered their sex, and in the larger
world the difference in men and women in that profession was
51% vs 49%, we would have 80% chance to detect it with a p-
value smaller than 0.05; and so 20% to miss it. Again we can
buy more certainty by increasing the sample size: if we want to
be 90% likely to detect this small difference, we would need to in-
clude 26,000 individuals.

This reasoning can also be turned around: with a very small
sample size even large effects will not lead to a small p-value,
and with very large datasets even the smallest differences will
lead to small p-values.

The size of a study is not a scientific truth: it is dependent on
resources, time, and the availability of volunteers or patients. This
implies that the use of the p-value in statistical tests, it being a
function of the sample size, cannot be viewed as scientific.

5. Statistical inference

The statistical inference is the conclusion based on a statistical test,
and follows the same reasoning as is used for laboratory tests: we
know the distribution of a certain biological parameter in the normal
population, i.e., for antithrombin. When a patient has 50% of the normal
concentration in the plasma, we know that this is extremely unlikely for
an individual from the normal population without a defect allele, and
hence we conclude this individual comes not from the normal, but
from another population, namely that of people with antithrombin de-
ficiency due to a genetic defect. In the statistical test, the null hypothesis

represents the ‘normal population’, i.e.,, we assume that there is no
association or difference. Then we calculate the probability of the obser-
vation or even more extreme observations if there was indeed no asso-
ciation (conditional probability). When this probability is very small, we
infer, as in the laboratory test, that our assumption was probably wrong,
and that the null hypothesis is not true. In other words, when we throw
1000 heads in 1000 consecutive throws, the probability of this happen-
ing is 9.3+1073%2, which is so small that we conclude the coin is crook-
ed. The standard cut-off value to make this inference is 0.05. So, with
this cut-off we would also after an experiment of five throws showing
five heads (p = 0.032) conclude that the coin is false. If we do that,
we are wrong 0.032, i.e., 3.2% of the times, which is called the type |
error.

6. The logic of p < 0.05

There is no logic to it. There is no mathematics or biology that
supports a cut-off value of 5%. Probably five was chosen because we
use a decimal system, 0-9, and five is half of that. And of course there
is no reason to prefer a system with ten digits over one with 12 or
four: the only reason we use it is because we have ten fingers.

A bit deeper: several outcomes

In the example above, an extreme is given of only one of two possi-
ble outcomes (heads and tails) occurring, but what if both outcomes
occur in a series? Suppose we threw the coin a hundred times, and
in one experiment observed heads once and tails 99 times, and in
the other heads 50 and tails 50 times. It is immediately obvious that
in the first we would conclude the coin is unfair, and in the second
that it is fair. But what are the probabilities? These can be calculated
by simple binomial probability formulas. Observing exactly 1in 100,
has a probability of 100%(0.5)'x(0.5)°® = 7.9 x 10~ ?°, which is
very small indeed (0.000000000000000000000000000079).

50

# (0.5)%° % (0.5)°°. This probability is 0.079. That feels surprising,
for we thought if any this outcome would indicate a fair coin, and
that if the coin was fair, a 50-50 outcome would have the highest
probability. The fact is that this is the highest probability for any pos-
sible outcome, for we should realise there are a very large number of
outcomes for 100 throws, if we take into account not only the num-
ber of heads and tails, but also their order. In total, there are 100? =
10,000 different scenarios possible. Taking that into account, a
probability of 7.9% for 50-50 is quite high. This is, however, not
the p-value in this case, which is defined as the probability of the
observation or any more extreme observation, so P(x = 50). This
is 0.54, so we would conclude there seems nothing wrong.

Observing 50 of each in 100 throws, has a probability of ( 100)

7. What does a significant p-value say?

A common fallacy is that the p-value says anything about the
observation being the result of chance, or even is the probability that
the association is not true (i.e., that if p = 0.05, there is 5% chance that
the observation was due to chance, and 95% probability the association
is true). Neither of these is correct: whether chance events occur at all is
a question for priests or quantum physicists, but it cannot be quantified,
nor can the probability of the truth be estimated. As explained above,
the p-value has the anchor of the null hypothesis: we calculate the prob-
ability of observing these data if the null hypothesis were true, but we
cannot calculate the probability whether the null hypothesis is true or
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not. What the p-value really tells us, is how often we will be wrong if we
infer there is indeed a difference or association while there is not.

8. What does a non-significant p-value say?

Even less. While a significant p-value gives us some idea about the
(un)likelihood of the outcome of the experiment under the null hypoth-
esis, a non-significant p-value has only the interpretation that it is not
significant. A common fallacy is that a large p-value would prove that
there is no association or no difference. This can simply logically be
shown to be untrue, when one realises that the p-value is a function
of the sample size. Suppose we did a study on a certain genetic variant
and type 2 diabetes, and found that the variant doubled the risk, with
a p-value of 0.04. Subsequently, we look separately in men and
women, and find that in each group the variant doubles the risk, and
now in each group p > 0.05. Given the smaller sizes of the subgroups,
this is a plausible scenario. However, if one would conclude that
p > 0.05 proves there is no association, one would find oneself in the
paradox that a genetic variant did not increase risk in women, and did
not increase risk in men, but did increase risk in people. Although the
logic here seems obvious, in some form this fallacy is often seen, for in-
stance with multivariable adjustments: again, a study shows an associ-
ation between a trait, e.g. BMI, and the occurrence of type 2 diabetes,
with a doubling of risk for those who are obese, with p < 0.05. Subse-
quently a multivariate model is used, controlling for a series of variables
such as age, sex, ethnicity, alcohol intake and exercise. The result is the
same association, still a doubling of risk, but now p > 0.05. Those who
believe the result has changed, have failed to realise that multivariable
analysis is done by stratification, i.e., by making many subgroups,
and due to the increased degrees of freedom in the statistical test the
p-value will increase, just like in subgroup analyses.

9. Sample size and relevance

The dependence of the p-value on the number of subjects in the
study can easily misguide the reader. For instance, two studies into
new treatments for a certain disease are published with only the p-
values, stating that the effect of the first drug was statistically not signif-
icant, while that of the second was. The naive reader might think that the
second drug should be used, and the first one dismissed. However, the
difference may have been the result of differences in sample size, and
in reality the non-significant study may have had a more pronounced
and clinically relevant effect, worthwhile to explore further, whereas
the large study yielded a statistically significant result, but a clinically ir-
relevant effect. This is illustrated in Fig. 1.

10. All p-values are different, but some are more different
than others

Whereas the p-value itself is dependent on the difference between
the groups and the sample size of the study, the interpretation depends
also on the prior likelihood of the hypothesis. This again is similar to
clinical diagnosis, and intuitively known to all physicians: a small devi-
ation on an ECG of a healthy young boy will impress a cardiologist less
than when the ECG is from a 55-year-old overweight man, and the shad-
ow on a lung X-ray of a healthy young girl will have fewer consequences
than on the lung photo of a 60-year-old smoker. Why? Because the a
priori likelihood of cardiac ischaemia or lung malignancies is very low in
healthy children, lower than the probability of a measurement error.
This reasoning can be quantified, as it is done in diagnostic algorithms.

For instance, when a diagnostic test with a sensitivity (ability to
detect the disease) of 90% and a specificity (ability to detect absence
of disease) of 95% is used in a population in which half of the patients
has the disease, it will classify 90 out of 100 people with the disease as
diseased (true positive), and 95 of the 100 non-diseased correctly as
not diseased, and therefore 5 of the 100 without the disease as diseased

. '
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Fig. 1. A statistically significant and a statistically non-significant study. The figure shows
two studies with two different drugs against placebo. The study of the left: RR = 0.70, CI95
0.38-1.02, p > 0.05. The study on the right: RR = 0.88, CI95 0.80-0.95, p < 0.05. The sample
size of the study on the right was larger than of the study on the left.

(false positive). Amongst 95 with a positive test, 90 indeed have the
disease (94.7%). Here 50% (100:100) is the prior probability and 94.7%
the posterior probability. The test may be useful, since most of those
with a positive test indeed have the disease. Now we apply exactly the
same test in a population in which very few have the disease, say one
per 1000. This is the typical situation in screening. Of 100,000 people,
100 will be diseased, and 90 of them have a positive test. Of the other
99,900 without the disease, 5% will be false positive, which is 4995
people. So now, only 90 out of 5085 with a positive test will actually
have the disease (1.8% posterior probability), and the far majority of
those with a positive test do not have the disease. These two scenarios
are shown in Table 1.

This way of reasoning follows the theorem of Bayes, named after an
English reverend (Thomas Bayes, 1702-1761), and it can also be used
for statistical tests, where we use the prior plausibility or prior belief
that a hypothesis is true. The sensitivity to detect disease becomes
the power to detect the hypothesis, and the type I error is the false-
positive rate (for the type I error was the probability to conclude there
is difference (hypothesis is true), when it is not). As Table 1 shows, the
reasoning is completely similar to that of a diagnostic test, where the
experiment is a diagnostic test of natural truths.

This example shows that the meaning of a statistically significant re-
sult is not uniform: like with a diagnostic test it is highly suggestive
when the hypothesis that was studied was a priori likely. If, however,
the hypothesis was extremely unlikely, even the majority of significant
results will not be true. This is the reason why highly statistically signif-
icant results of unlikely hypotheses say very little, and why positive tri-
als into the impossible, e.g. a trial into homoeopathy can be dismissed.

11. Ceterum paribus

The basic idea of comparative studies is to study two samples with
only one variable differing, and everything else being the same. There
is a firm assumption underlying statistical test, i.e., that all variation is
random. This is not true in observational studies, and originally statisti-
cal tests were seen as appropriate only in randomised trials. But even in
randomised trials there are many sources of non-random variation,
such as early termination after interim analyses, choices for a particular
set of variables in multivariable adjustment, choices for cut-off values,
and subgroup analyses. Therefore it is likely that every p-value is an
underestimate.

12. Conclusion

Reporting study results by statistical significance can mislead the
reader: statistically significant p-values may indicate small irrelevant
effects, or may simply be false-positive due to a low prior plausibility.
Non-significant p-values cannot lead to any conclusion. The dichotomy
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Table 1
Diagnostic and statistical tests for high and low prior probability.
D+/H1 D—/HO D+/H1 D—/HO
T+/p<0.05 90 5 90 4995
T—/p>0.05 10 95 10 94905
100 100 100 99,900

The left panel shows a diagnostic test or statistical test when the prior probability of
disease or the hypothesis of interest (D + or H1) is 50%, and the right panel when it is
0.1%. Sensitivity/power is 90% for both, and specificity = 1-type I error is 5%. Posterior
probabilities are 90/95 and 90/5085.

in significant and non-significant is unscientific, and is a sign of hubris,
for a single study can only very rarely be definitive. The cut-off value
of 0.05 is fully arbitrary, and there is no reason it should be preferred
over cut-offs for significance of 0.10 or 0.01. It is therefore much more
useful to present the actual effect size (how much the risk was increased

by a risk factor, or how much the endpoint occurrence was reduced by a
therapy) with a range of plausible values. This range of plausible values
can be represented by a confidence interval, as is shown in Fig. 1.
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