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ost pediatricians are attuned to their patients’
linear growth (height gain). At each visit, the
child’s height should be carefully measured and

plotted. The clinician can then scrutinize the temporal
pattern, and, if the linear growth appears abnormal,
initiate an investigation to uncover the underlying prob-
lem. Despite this close interest in our patients’ statural
gains, linear growth itself often is considered as a “black
box,” a mysterious process regulated by nutrition, hor-
mones, genetics, and overall health. Recently, there have
been exciting advances in understanding the biological ba-
sis of linear growth. We have gained new insights as to why
linear growth is rapid in infancy, then slows in childhood,
accelerates in adolescence, then slows again and ceases by
adulthood. We now understand much better the mecha-
nisms by which hormones, nutrition, and systemic illness
regulate linear growth. Perhaps most exciting, genome-
wide association (GWA) studies and exome sequencing
have begun to identify numerous novel genes that regulate
linear growth, and, when mutated, cause childhood growth
disorders.

To understand these important new findings and their im-
plications for our patients, we must look inside the black box
of linear growth. Just as we can only understand children’s
respiratory physiology in terms of lung biology, so too we
can only understand linear growth and growth disorders in
terms of the underlying biological process, growth plate
chondrogenesis.

Clinical Vignette

A 6-year-old boy presents for evaluation of short stature. He
was born at term with a length and weight appropriate for
gestational age. By 2 years of age, his length percentile had
dropped below the third percentile. Weight was less affected.
He has been otherwise healthy. His mother and father are
both 160 cm (63 in) tall. On physical examination, the
boy’s height is below the first percentile at �2.2 SDS. His
sitting to standing height ratio is at the 95th percentile for
age. His father’s sitting to standing height ratio is greater
than the 95th percentile for age.

In this review, we will discuss a variety of novel con-
cepts that will aid in the assessment of such children.
We will see that this child’s altered body proportions indi-
cate that the condition affects the growth plates in the
lower extremities more than the growth plates of the
GWA Genome-wide association

IGF-I Insulin-like growth factor-I
vertebrae. This disproportion suggests a primary linear
growth condition, that is, an underlying mechanism that
is intrinsic to the growth plate. The similar phenotype
of the father suggests a dominant inheritance. Targeted
sequencing by a commercial laboratory showed a muta-
tion in SHOX, which encodes a transcription factor
required for normal growth plate chondrocyte function.
Heterozygous SHOX mutations account for approxi-
mately 2%-5% of children with formerly idiopathic short
stature. SHOX lies on the X chromosomes, but, unlike
most X-chromosome genes, a second copy is present on
the Y chromosome in boys, and consequently SHOX mu-
tations are inherited in a pseudoautosomal pattern.
Linear Growth in Children Is Driven by
Growth Plate Chondrogenesis

Children grow taller because their bones grow longer. This
bone elongation occurs at the growth plate, a cartilaginous
structure that is located near the ends of many bones in
children, including long bones, the short tubular bones of
the hands and feet, and the vertebrae. The growth plate com-
prises 3 distinct layers: the resting, proliferative, and
hypertrophic zones (Figure 1). Each zone has unique roles.
The resting zone serves as a reservoir of progenitor
chondrocytes.1 The proliferative zone, which contains
chondrocytes arrayed in columns, is the site of rapid cell
proliferation (Figure 1).2 At the edge of the proliferative
zone closest to the metaphysis, the cells stop dividing and
become enlarged to form hypertrophic chondrocytes
(Figure 1).2 This cell proliferation and cell hypertrophy,
combined with extracellular matrix secretion, result in
chondrogenesis, that is, the production of more and more
cartilage.2 In isolation, this chondrogenesis would cause the
cartilaginous growth plate to become progressively wider
with age. Simultaneously, blood vessels, osteoclasts, and
osteoblasts, however, invade the hypertrophic zone and
remodel the newly formed cartilage into bone.2 The net
result is that new bone is formed at the boundary between
the growth plate and the metaphysis, causing the bones to
grow longer and the child to grow taller.
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Figure 1. Growth plate chondrogenesis diagram. A, Growth
plate (light blue) lies near the end of a long bone. B, Enlarged
view of the growth plate illustrating its 3 zones. C, The prolif-
erative zone chondrocytes, which are arranged in columns,
undergo cell divisions (yellow bars trace a single cell over
time). D, When chondrocytes reach the border of the prolif-
erative zone closest to the metaphysis, they cease prolifer-
ating and instead hypertrophy. Proliferation, hypertrophy, and
extracellular matrix secretion contribute to chondrogenesis
(cartilage formation). At the boundary of the growth plate and
the metaphysis, the newly formed cartilage is remodeled into
bone (not shown).
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Figure 2. Changes in linear growth velocity with age. The
linear growth velocity (change in body length per year) is rapid
in infancy, declines in childhood, accelerates in adolescence,
and then declines and ceases by adulthood. The principal
underlying mechanisms are shown. The Figure represents
typical growth for a boy. Girls usually show an earlier growth
spurt and earlier cessation of growth. The timing of the growth
spurt and cessation of growth often are shifted to the right in
malnutrition, chronic systemic disease, and in healthy
children with a slow developmental tempo. A shift to the left
occurs in children with rapid developmental tempo.
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Linear Growth Is Rapid in Infancy but
Subsequently Slows as the Result of
Programmed Senescence of the Growth
Plate

The human fetus grows rapidly. From 12 weeks of gestation
until term, the length of the fetus increases from approxi-
mately 6 to 50 cm, an average growth velocity of 82 cm/
year.3 If newborns were to maintain this growth rate after
birth, the child would reach adult size before 2 years of age.
The growth rate, however, declines rapidly after birth. The
decline is temporarily interrupted by the pubertal growth
spurt but then resumes until the growth rate reaches zero
(Figure 2).4

The decline in the linear growth rate during childhood ap-
pears to be driven primarily by local mechanisms within the
growth plate, rather than by systemic mechanisms. There are
no growth-regulating hormones whose concentration
changes in a pattern that would explain the decline in growth
rate. For example, the concentration of insulin-like growth
factor-I (IGF-I) actually increases with age during child-
hood.5 Furthermore, growth plates have been transplanted
between rabbits of different ages, and the growth rate of the
transplanted growth plates depends on the age of the donor,
not the recipient, suggesting that the decline in growth rate is
caused by a local, growth plate mechanism, rather than a sys-
temic mechanism.6
2

Recent studies have identified a developmental program
intrinsic to the growth plate cartilage, termed “growth plate
senescence,” which is responsible for the decline in growth
rate with age. With increasing age, the growth plate gradually
involutes, so that the number of cells in each zone dimin-
ishes.7-9 Concurrently, the rate of proliferation and the extent
of cell hypertrophy diminish,7,8 causing the child’s linear
growth to slow. Eventually, proliferation ceases altogether,
and the nonfunctional growth plate is resorbed and replaced
by bone, an event termed epiphyseal fusion or growth plate
closure (Figure 2).10 Thus, epiphyseal fusion does not
cause growth cessation, as often is assumed, but instead
fusion is the result of growth cessation.11 Growth plate
senescence appears to be driven by an extensive genetic
program that involves the down-regulation with age of
many growth-promoting genes.12 A related growth-limiting
genetic program occurs in other tissues, causing somatic
growth also to slow and eventually cease in other major
organ systems.13-15

In children, the progression of growth plate senescence can
be assessed indirectly from a radiograph of the left hand and
wrist. On these radiographs, the child’s bone age is evaluated
by observing the extent to which the cartilage skeletal ele-
ments have been converted into bone. The bone age appears
to serve as a radiologic marker for growth plate senescence in
that it predicts the amount of linear growth remaining and
therefore helps predict the adult height.
Jee and Baron
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Variations in Tempo of Growth, Including
Catch-Up Growth

Importantly, growth plate senescence is not driven by time
but rather by the process of growth itself.7,16 Consequently,
childhood malnutrition or systemic illness slows not just
the rate of linear growth but also the rate of growth plate
senescence.7,17 If the illness resolves, the growth plates do
not just resume a normal growth rate. Instead, the growth
plates, which are less senescent than normal for age, function
at the more rapid rate that would be appropriate for a
younger child, resulting in catch-up growth.7,16-18 Previ-
ously, catch-up growth had been thought to result from a
central nervous systemmechanism,19 but recent studies favor
this local mechanism7,16-18 involving delayed growth plate
senescence, although it remains unclear whether other mech-
anisms also contribute.20

The pace of growth plate senescence also appears to vary
among healthy children and to be associated with the child’s
overall tempo of maturation. For example, some otherwise-
healthy children show a slow overall tempo of maturation,
with slower childhood growth, delayed puberty, and
continued growth into late adolescence. In this condition,
termed constitutional delay of growth and puberty, the pres-
ence of prolonged growth and a delayed bone age, even
before puberty, suggests that the pace of growth plate senes-
cence also is slowed. This condition appears to be familial,
suggesting a genetic basis. In some children, the delay in
maturation appears to be driven by subtle undernutrition
due to diminished appetite.21,22
The Pubertal Growth Spurt

As reviewed previously, a local developmental program
termed growth plate senescence causes the linear growth ve-
locity in children to decline through infancy and childhood,
reaching 5 cm/per year just before the onset of puberty
(Figure 2)4; however, with puberty, the gonads increase
production of sex steroids, which exert strong positive
effects on linear growth (Figure 2). Estrogen contributes to
the linear growth acceleration, in part by stimulating
secretion of growth hormone by the pituitary gland.23

Androgen, either from the adrenal glands or gonads,
appears to contribute to the pubertal growth spurt in part
through conversion to estrogens by the enzyme aromatase,
but androgen also appears to have a stimulatory effect on
the growth plate which is not mediated by conversion to
estrogen or by increased growth hormone.24 This effect may
explain the growth-stimulating effect of androgens that
cannot be converted to estrogens, for example, oxandrolone
treatment in Turner syndrome.25

Estrogen exerts another important effect on the growth
plate; it accelerates growth plate senescence apparently by
depleting the pool of chondrocyte progenitor cells.8 This phe-
nomenon has important clinical implications. Early exposure
to estrogen, in children with precocious puberty, causes not
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only accelerated growth but also accelerated growth plate
senescence (reflected by an advanced bone age) and conse-
quently early cessation of growth, early epiphyseal fusion,
and a diminished adult stature.26 Conversely, delayed puberty
slows growth plate senescence (reflected by a delayed bone
age), causing delayed growth cessation, delayed epiphyseal
fusion, and an augmented adult stature.27 Similar effects are
seen inmenwith either estrogen resistance attributable tomu-
tations in estrogen receptor-a or with estrogen deficiency
attributable to mutations in the enzyme aromatase, which is
required for estrogen synthesis by converting androgen to es-
trogen, both of which continue to grow gradually well into
adulthood, resulting in marked tall stature.28,29 The recogni-
tion of this effect of estrogen on the growth plate has given
rise to a new experimental treatment for short stature in
boys, using aromatase inhibitors,30 although the long-term ef-
ficacy and safety are not yet established.

Short and Tall Stature Are Caused by Altered
Rates of Growth Plate Chondrogenesis

Because linear growth in children is driven primarily by
growth plate chondrogenesis, short stature is essentially al-
ways caused by decreased chondrogenesis in the growth plate
and tall stature by increased chondrogenesis. The primary
causes of short or tall stature can lie either in the growth plate
itself (primary linear growth condition) or can lie outside the
growth plate but affect chondrocytes through abnormal con-
centrations of hormones, cytokines, nutrients, and other
molecules necessary for normal chondrocyte function
(secondary linear growth condition).

Regulation of Linear Growth

The rate of growth plate chondrogenesis, and therefore the
rate of linear growth in children, is subject to extensive regu-
lation by nutritional intake, hormones, inflammatory cyto-
kines, paracrine growth factors, extracellular matrix factors,
and intracellular proteins.

Nutritional Intake
Both inadequate and excessive nutritional intake alter longi-
tudinal bone growth. In nutritional deficiency, much of the
effect appears to be mediated by endocrine factors: decreased
IGF-I, sex steroids, and thyroid hormone and increased glu-
cocorticoids, as may be observed in children with anorexia
nervosa.31 In nutritional excess causing obesity, linear growth
may be accelerated, resulting in tall stature and advanced
bone age, but the adult height is not substantially affected.32

The underlying mechanisms remain poorly understood.

Hormones
Thyroid hormone, growth hormone, IGF-I, androgen, and
estrogen all positively regulate linear growth. Consequently,
deficiency of these hormones can present clinically with
decreased linear growth.33-35 In contrast, glucocorticoid in
excess negatively regulates linear growth, accounting for the
3
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poor linear growth of children with endogenous or exoge-
nous Cushing syndrome.36 Each of these hormones acts in
part through a direct, local effect on growth plate chondro-
genesis,37-40 although there are also complex interactions
among these systems; for example, thyroid hormone and es-
trogen positively regulate growth hormone secretion.23,40,41

Inflammatory Cytokines
Tumor necrosis factor-a, interleukin-1b, and interleukin-6
all negatively regulate growth plate chondrogenesis. There
is evidence for both direct, local actions on growth plate
chondrocytes as well as indirect actions, involving IGF-I sup-
pression.42 These adverse effects of circulating proinflamma-
tory cytokines likely contribute to the linear growth
impairment in children with inflammatory bowel disease or
juvenile idiopathic arthritis.42,43

Paracrine Growth Factors
Multiple paracrine growth factors are produced locally in the
growth plate, and these paracrine growth factors, including
IGFs, C-natriuretic peptide, bone morphogenetic proteins,
and fibroblast growth factors, affect adjacent chondrocytes
by acting on specific cell-surface receptors.44-47 Consequently,
patients with mutations in genes involved in these signaling
Table. Examples of monogenic short stature

Genes Proteins D

Paracrine signaling
FGFR3 Fibroblast growth factor receptor-3 Achondroplasia

Hypochondroplasia
Thanatophoric dysp
ISS

GNAS G-protein a subunit Albright hereditary o

PTH1R Parathyroid hormone-1 receptor Blomstrand chondro

NPR2 Natriuretic peptide receptor-2 ISS (heterozygous)
Acromesomelic dys

(homozygous)
PTPN11, SOS1, RAF1,

others
Various proteins involved in
RAS/MAPK signaling

Noonan syndrome

Cartilage extracellular
matrix
ACAN Aggrecan ISS (heterozygous)

Spondyloepiphyseal
Kimberly type (hete
Spondyloepimetaph

type (homozygou
COL2A1 Collagen type 2 alpha 1 Spectrum of chondr

Col10A1 Collagen type 10 alpha 1 Metaphyseal chond

COMP Cartilage oligomeric matrix protein Pseudoachondropla

Intracellular regulation
SHOX Short stature homeobox ISS (heterozygous)

Leri–Weill dyschond
Langer mesomelic d

CUL7 Cullin 7 3M syndrome
OBSL1 Obscurin-like 1
SOX9 SRY box 9 Campomelic dyspla

ISS, idiopathic short stature; IUGR, intrauterine growth retardation; MAPK, mitogen-activated protei

4

systems can present with linear growth failure or overgrowth
(Table). For example, homozygous inactivating mutations in
NPR2, the receptor for C-natriuretic peptide, cause a skeletal
dysplasia with severe short stature,48 whereas heterozygous
inactivating mutations present as idiopathic short stature49,50

and activating mutations produce tall stature.51,52

Extracellular Matrix
The extracellular matrix of growth plate cartilage is
composed of collagens (including collagen II and X), proteo-
glycans (including aggrecan and perlecan), and noncollage-
nous proteins (including cartilaginous oligomeric matrix
protein).53 Mutations affecting these proteins can present
clinically either as short stature with minimal bone defor-
mity, as seen in heterozygous aggrecan mutations, or as a
skeletal dysplasia as seen in collagen type 10 or cartilaginous
oligomeric matrix protein (Table).54,55

Intracellular Proteins
Transcription factors such as RUNX2, SOX9, and SHOX play
major roles in growth plate chondrogenesis. For example,
mutations in RUNX2 cause cleidocranial dysplasia and mu-
tations in SOX-9 cause campomelic dysplasia.56,57 Homozy-
gous mutations in SHOX cause severe short stature in Langer
isorders Specific clinical findings

lasia

Varies from severe disproportionate skeletal
growth failure to proportionate short stature

steodystrophy Brachydactyly, short fourth and fifth metacarpal
bones, subcutaneous ossifications

dysplasia Severe skeletal growth failure, advanced skeletal
maturation

plasia, Maroteaux type
Short stature, [S/S ratio in some patients

Cardiac anomalies, characteristic facies, other
developmental anomalies

dysplasia
rozygous),
yseal dysplasia, aggrecan
s)

Osteochondritis dissecans, early-onset
osteoarthritis

odysplasias Disproportionate short stature, arthropathy, eye
abnormalities, cleft palate, hearing loss

rodysplasia, Schmid type Disproportionate short stature, bowing of long
bones

sia Disproportionate short stature, early-onset
osteoarthritis

rosteosis (heterozygous)
ysplasia (homozygous)

[S/S ratio, Madelung deformity

IUGR

sia Shortening and bowing of limbs, characteristic
facies, 46 XY sex reversal

n kinase; RA, rat sarcoma; S/S ratio, increased sitting to standing height ratio.
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mesomelic dysplasia, whereas heterozygous mutations can
present as a milder skeletal dysplasia, Leri-Weill dyschon-
drosteosis, or more commonly as “idiopathic” short stature
with or without disproportion.58 Heterozygous SHOX defi-
ciency is also the principal cause of short stature in Turner
syndrome because the SHOX gene is located in the pseu-
doautosomal region of the X-chromosome. Genes that affect
epigenetic modifications have emerged as a cause of over-
growth syndromes.59 For example, mutations in histone
methyltransferases EZH2 and NSD1 cause Weaver syndrome
and Sotos syndrome, respectively.60,61

Short Stature Can Result from Numerous
Genetic Defects Affecting Growth Plate
Chondrogenesis

As discussed previously, growth plate chondrogenesis is under
complex regulation at multiple levels, including nutritional,
endocrine, cytokine, paracrine, extracellularmatrix, and intra-
cellular protein factors. Consequently,mutations in genes that
participate in any of these levels of regulation can result in
short stature. Even a mutation that diminishes growth plate
chonodrogenesis by only 10% will produce clinically-
significant short stature. The Table provides examples of the
genetic causes of short stature that affect growth plate
chondrogenesis locally. Depending on the nature of the gene
involved, the number of alleles affected, and the severity of
the mutation, the short stature can be proportionate or
disproportionate, syndromic or nonsyndromic, prenatal
or postnatal in onset, and associated with skeletal
malformation (a chondrodysplasia) or not. Often, specific
manifestations of the genetic defect can aid in clinical
diagnosis, for example, dysmorphic facies in Noonan
syndrome, increased sitting/standing height ratio in SHOX
deficiency62 or hypochondroplasia,63 short fourth and fifth
metacarpal bones in Albright hereditary osteodystrophy,64

or early-onset osteoarthritis due to aggrecan mutations.54

Specific genetic testing has become increasingly available at
commercial diagnostic laboratories. Recently, exome
sequencing has emerged as a powerful new approach to
identify novel genetic causes of growth disorders. Exome
sequencing uses high-throughput sequencing techniques to
detect mutations in exons.65 During the 5-year period since
its first application, exome sequencing has identified novel
mutations in known genes to cause growth disorders and
also discovered mutations in genes not previously implicated
in childhood growth, either in subjects with syndromic short
stature such as CEP152 mutations in Seckel syndrome66 and
CCDC8 mutations in 3M syndrome67 or patients presenting
with nonsyndromic short stature, such as ACANmutations.54

Normal Variation in Height and Polygenic
Short Stature

Recent GWA studies have provided important new insights
into the genetic determinants of stature. Large meta-
analyses of GWA studies have identified more than 400 loci
The Biology of Stature
scattered throughout the genome that are associated with
adult height in the general population.68 Although the precise
gene that affects height at each locus cannot always be pin-
pointed, bioinformatics analyses indicate that a large subset
of these genes affect height because of a role in growth plate
cartilage.68,69 Although these genes were identified because
they modulate height within the normal range, it seems likely
that polymorphisms in these genes may also result in poly-
genic short stature.70
Conclusion

Growth plate chondrogenesis is the fundamental biological
process that drives linear growth in children and therefore
determines stature. Recently, a complex cartilage develop-
mental program, termed growth plate senescence, has been
elucidated that is responsible for the normal deceleration
and eventual cessation of linear growth. Recent laboratory
and clinical studies have revealed that estrogen accelerates
growth plate senescence, thus explaining the clinical growth
patterns seen in patients with precocious and delayed puberty
and patients treated with aromatase inhibitors to prolong
linear growth. Powerful new genetic approaches, including
exome sequencing and GWA studies, have helped identify
new genes that regulate growth plate chondrogenesis. Poly-
morphisms in these genes modulate height within the normal
range and likely contribute to polygenic short stature,
whereas more severe mutations in these genes may present
as monogenic isolated short stature, syndromic short stature,
or skeletal dysplasia.
Understanding the biology of stature provides the clinician

with a broad framework to conceptual the myriad of condi-
tions that present with short and tall stature. In the near
future, it seems likely that the diagnostic approach to chil-
dren with severe short or tall stature will include exome or
whole-genome sequencing. By conceptualizing linear growth
in terms of the underlying growth plate biology, the clinician
will be better equipped to interpret the resultant genetic fin-
dings. n
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