Programa de actividad curricular

Unidad 2 BASES MOLECULARES Y CELULARES Espacio Curricular A "BASES MOLECULARES Y CELULARES DEL ORGANISMO ANIMAL"

1.- Competencia a lograr: Dominio del conocimiento básico de los fenómenos biológicos relacionados con los diversos campos de la formación profesional

Los descriptores transversales del espacio curricular son:

- 1) Reconoce la naturaleza científica de las disciplinas de este espacio, identificando sus objetos de estudio, sus métodos y las particularidades de sus lenguajes
- 2) Comprende los procesos celulares a través de conocer e integrar las bases científicas de las distintas disciplinas de este espacio
- 3) Reconoce la existencia de modelos y los utiliza como herramientas para la comprensión de los fenómenos descritos en las distintas disciplinas
- 4) Reconoce fuentes de información válidas, selecciona la información de acuerdo al tema de interés y la organiza para comunicarla adecuadamente

Los descriptores específicos para la Unidad-2 son:

- 1) Reconoce la existencia de redes de reacciones interconectadas que dan cuenta de la síntesis y degradación de las moléculas que se encuentran en un organismo vivo, y su regulación
- 2) Comprende y explica los procesos mediante los cuales los seres vivos, en particular las células animales, transforman la energía
- 3) Reconoce la importancia estructural y funcional de las diversas biomoléculas
- 4) Comprende las bases de los procesos de expresión génica y su regulación
- 5) Comprende la base estructural y los mecanismos involucrados en los procesos de comunicación celular
- 6) Reconoce diferentes métodos de separación, detección y cuantificación de moléculas de interés biológico
- 7) Interpreta al nivel molecular fenómenos físicos o químicos observados en el laboratorio
- **2.- Objetivo del espacio:** Conocer y comprender el fundamento científico básico de los fenómenos biológicos que rigen la estructura y funcionalidad de la vida animal desde lo molecular hacia lo celular.

3.- Ejes de conocimientos del espacio:

Eje 3: Procesos de transformaciones metabólicas

4.- Contenidos fundamentales por eje

Eje 3: Procesos de transformaciones metabólicas

- A) Generalidades de los procesos celulares
- B) Biocatalizadores, enzimas
- C) Métodos de estudio de biomoléculas
- D) Metabolismo: procesos catabólicos
- E) Bioenergética. Transporte de electrones, cadena respiratoria, síntesis de ATP
- F) Metabolismo: procesos anabólicos
- G) Ácidos nucleicos. Replicación, transcripción, traducción y regulación de la expresión génica
- H) Mecanismos de transducción de señales. Mediadores, receptores y transducción
- I) Regulación del metabolismo

Actividades complementarias: trabajos de laboratorio, ejercicios y discusión de temas. Los siguientes temas se desarrollan durante el primer y segundo semestre:

- Enzimas: discusión en grupos
- Enzimas: dos sesiones en laboratorio
- Métodos de separación de moléculas
- Métodos de detección y cuantificación de moléculas
- Oxidaciones biológicas
- Presentación de trabajos de investigación bibliográfica

5.- Profesores participantes

- Coordinador del Espacio: Eduardo Kessi C.
- Coordinador de Unidad-2: Marco A. Gallequillos C.
- Docentes : Héctor Adarmes A

Marco A. Galleguillos C. Eduardo Kessi C. Sergio Bucarey V.

6.- Programación de actividades (horario)

En el semestre primavera se desarrolla parte de la unidad-2 en el siguiente horario:

14:30 - 17:30 hrs 09:00 - 12:00 hrsLunes Viernes (sección 1 - sala (Laboratorio nº 2) mañana) 14:30 - 17:30 hrs Martes 14:30 – 17:30 hrs Viernes (sección 2 - sala (Laboratorio nº 5) tarde)

Las actividades comprenden clases expositivas y trabajo dirigido en laboratorio, así como ejercicios, discusión de grupos y trabajos de investigación bibliográfica, en un total de 5 actividades.

Clases : 45 hrs Laboratorios: 10 hrs **Total : 55 hrs**

7.- Evaluación: Se realizarán dos pruebas que a su vez tendrán dos partes: una relacionada con lo desarrollado en clases y otra con las actividades de laboratorio, de discusión o de ejercicios (actividades prácticas). Además se realizarán pruebas formativas durante las diversas actividades

Ponderaciones:

P1 teórico 40% P2 teórico 40%

Promedio P1-P2 de actividades prácticas 20%

El promedio ponderado de las notas indicadas más arriba constituirá la nota de presentación a la prueba final integrativa. La nota final de la Unidad-2 se obtendrá de la siguiente manera:

Promedio ponderado de la Unidad 2 75 % Prueba final integrativa 25%

Aprobarán la Unidad los estudiantes cuya nota final sea igual o superior a 4,0.

Las pruebas parciales pendientes, debidamente justificadas, serán reemplazadas con la nota obtenida en la Prueba Integrativa

8.- Bibliografía

Como textos de apoyo o consulta se recomiendan:

- Herrera, E. Elementos de bioquímica. Ed. interamericana. McGraw-Hill, México, 1993 (o de fecha posterior)
- Murray, R.K.; Mayes, P.A.; Granner, D.K.; Rodwell. V.W. Bioquímica de Harper. Ed. El manual moderno, Méxixo, 15^a Ed. 2001
- Díaz, J.C.; Hicks, J.J. Bioquímica. Ed. Iteramericana. McGraw-Hill, México, 2ª Ed. 1995
- Riquelme, A.; Galleguillos, M. Editores. Organelos y bioenergética. Universidad de Chile, Campus Sur, 2004

Bibliografía complementaria:

- Stryer, L. bioquímica Ed. Reverté, S.A. Espeña, 1995 o de fecha posterior.
- Nelson, D.L.; Cox, M.M. Lehninger, Principles of Biochemistry. Ed. Worth Publishers, N.Y. 3^a Ed. 2000 o de fecha posterior.
- Bohinsky, R. Bioquímica. 1991 o de fecha posterior
- La Guía de actividades prácticas incluye información teórica y además en ella se adjunta un listado de material de apoyo disponible en la biblioteca para consulta o para ser fotocopiado.

Sitios Web recomendados:

- Ayudas al aprendizaje de la bioquímica y la biología molecular (en español): http://www.biorom.uma.es/indices/index.html
- Blogs donde se tratan temas generales en torno a las ciencias biológicas (Marco Galleguillos C.): http://basesmoleculares.blogspot.com/

CALENDARIO DE ACTIVIDADES UNIDAD-2 (2014)

Fecha	Actividad	Profesor			
	JULIO				
Lu 28	Presentación del curso. Estructura de proteínas (3h).	MG			
(sección 1)					
Ma 29	Presentación del curso. Estructura de proteínas (3h).	MG			
(Sección 2)					
	AGOSTO				
Vi 1	No hay actividades				
Lu 4	Enzimas, cinética enzimática. Modelo de Michaelis-Menten.	MG			
(sección 1)	Regulación de enzimas (modificación covalente, alosterismo,				
	zimógenos).				
Ma 5	Enzimas, cinética enzimática. Modelo de Michaelis-Menten.	MG			
(Sección 2)	Regulación de enzimas (modificación covalente, alosterismo,				
	zimógenos).				
Vi 08	Laboratorio 1: Proteínas (Mañana: Grupos 1 y 2. Tarde: Grupos 5 y	MG-HA			
	6)				
Lu 11	Enzimas alostéricas. Espectrofotometría (1h).Metabolismo	MG-HA			
(sección 1)	energético: catabolismo de hidratos de carbono. Glicólisis.				
	Gluconeogénesis (2h).				
Ma 12	Enzimas alostéricas. Espectrofotometría (1h).Metabolismo	MG-HA			
(Sección 2)	energético: catabolismo de hidratos de carbono. Glicólisis.				
	Gluconeogénesis (2h).				
Lu 18	beta-oxidación. Cetogénesis (3h)	НА			
(sección 1)					
Ma 19	beta-oxidación. Cetogénesis (3h)	НА			
(Sección 2)					
Vi 22	Laboratorio 1: Proteínas (Mañana: Grupos 3 y 4. Tarde: Grupos 7 y	MG-HA			
	8)				
Lu 25	Ciclo de Krebs. Fosforilación oxidativa (3h)	MG			
(sección 1)					
Ma 26	Ciclo de Krebs. Fosforilación oxidativa (3h)	MG			
(Sección 2) Vi 29	Laboratorio 2: Colorimatría (Mañana: grupos V. V.V. Tarda: Crupos	MC HA			
VI 29	Laboratorio 3: Colorimetría (Mañana: grupos V y VI. Tarde: Grupos	MG-HA-			
	VII yVIII)	SB			
1 64	SEPTIEMBRE	1110			
Lu 01	Biosíntesis de ácidos grasos y colesterol (3h)	HA			
(sección 1) Ma 02	Biosíntesis de ácidos grasos y colesterol (3h)	HA			
(Sección 2)	Diodificolo de acidos grasos y colesteror (off)	17			
Vi 05	Laboratorio 4: Enzimas I (Mañana: grupos I y II. Tarde: Grupos III	MG-HA-			
	y IV)	SB			
Lu 08	Depósitos energéticos: regulación de la biosíntesis de triglicèridos y	HA			
(sección 1)	glicógeno (3h)	11/4			
(30.011 1)					

		1		
Ma 09	Depósitos energéticos: regulación de la biosíntesis de triglicèridos y	HA		
(Sección 2)	glicógeno (3h)			
Lu 22	Metabolismo de aminoácidos. Ciclo de la urea. Ciclo de la	MG		
(sección 1)	glucosa alanina (3h).			
Ma 23	Metabolismo de aminoácidos. Ciclo de la urea. Ciclo de la	MG		
(Sección 2)	glucosa alanina (3h).			
Jueves	Prueba Nº1 (hasta clase del martes 01 de octubre y Laboratorios			
25	1 al 3) 17:30 horas.			
Vi 26	Laboratorio 4: Enzimas I (Mañana: grupos V y VI. Tarde: Grupos	MG-HA-		
	VII y VIII)	SB		
Lu 29	Aminoácidos como precursores de diversas biosíntesis. Metabolismo	MG		
(sección 1)	de bases nitrogenadas (3h).			
Ma 30	Aminoácidos como precursores de diversas biosíntesis. Metabolismo	MG		
(sección 2)	de bases nitrogenadas (3h).			
OCTUBRE				
Vi 03	Laboratorio 5: Enzimas II. (Mañana: grupos I y II. Tarde: Grupos II y	MG-HA-		
	III)	SB		
Lu 06	Metabolismo de ácidos nucleicos. Replicación y Transcripción en	EK		
(sección 1)	procariontes (3 h).			
Ma 07	Metabolismo de ácidos nucleicos. Replicación y Transcripción en	EK		
(sección 2)	procariontes (3 h).			
Vi 10	Laboratorio 5: Enzimas II (Mañana: grupos V y VI. Tarde: Grupos	MG-HA-		
	VII y VIII)	SB		
Lu 13	Biosíntesis de Proteínas (procariontes) (3h).	EK		
(Sección 1)				
Ma 14 (Sección 2)	Biosíntesis de Proteínas (procariontes) (3h).	EK		
Vi 17	Laboratorio 6: Oxidaciones Biológicas (Mañana: grupos I y II.	MG-HA-		
	Tarde: Grupos II y III)	SB		
Lu 20	Regulación de la expresión génica: modelo Operón Lactosa (1h).	EK		
(Sección 1)	Visión general de la expresión génica en eucariontes (2h)			
Ma 21	Regulación de la expresión génica: modelo Operón Lactosa (1h).	EK		
(Sección 2)	Visión general de la expresión génica en eucariontes (2h)			
Vi 24	Laboratorio 6: Oxidaciones Biológicas (Mañana: grupos VII y	MG-HA-		
	VIII. Tarde: Grupos III y IV)	SB		
Lu 27	"Expresión heterologa de proteínas y sus aplicaciones	SB		
(Sección 1)	biotecnológicas"			
Ma 28	"Expresión heterologa de proteínas y sus aplicaciones biotecnológicas"	SB		
(Sección 2) Jueves	Prueba 2 (Desde Clase del 14 de octubre hasta Clase del 19 de			
30	noviembre y todos los laboratorios) 17:30 horas.			
NOVIEMBRE				

Lu 03 (Sección 1)	Sistemas de transducción de señales. Integración hormonal de la respuesta celular	MG
Ma 04 (Sección 2)	Sistemas de transducción de señales. Integración hormonal de la respuesta celular	MG
Lu 10 (Sección 2)	¿Qué es el estrés oxidativo? Radicales libres en sistemas biológicos. Sistemas antioxidantes enzimáticos y no enzimáticos (3h)	MG
Ma 11 (Sección 1)	¿Qué es el estrés oxidativo? Radicales libres en sistemas biológicos. Sistemas antioxidantes enzimáticos y no enzimáticos (3h)	MG
	PRUEBA INTEGRATIVA. Semana	
	PRUEBA RECUPERATIVA	

Docente
MG : Marco Galleguillos ¹
HA: Héctor Adarmes
EK: Eduardo Kessi
SB: Sergio Bucarey

(1: Coordinador de unidad)

	Horas directas para alumno
Total de horas teóricas	45 horas
Total de horas de laboratorio	15 horas
Evaluaciones (2 evaluaciones parciales +	6 horas mínimo (8 si debe rendir Prueba
Prueba Integrativa)	recuperativa)
TOTAL	66 horas (68 horas)